Article

Amphiphilic block copolymers enhance the cellular uptake of DNA molecules through a facilitated plasma membrane transport.

INSERM, U915, l'institut du thorax, Nantes, F-44000, France.
Nucleic Acids Research (Impact Factor: 8.81). 10/2010; 39(4):1610-22. DOI: 10.1093/nar/gkq922
Source: PubMed

ABSTRACT Amphiphilic block copolymers have been developed recently for their efficient, in vivo transfection activities in various tissues. Surprisingly, we observed that amphiphilic block copolymers such as Lutrol® do not allow the transfection of cultured cells in vitro, suggesting that the cell environment is strongly involved in their mechanism of action. In an in vitro model mimicking the in vivo situation we showed that pre-treatment of cells with Lutrol®, prior to their incubation with DNA molecules in the presence of cationic lipid, resulted in higher levels of reporter gene expression. We also showed that this improvement in transfection efficiency associated with the presence of Lutrol® was observed irrespective of the plasmid promoter. Considering the various steps that could be improved by Lutrol®, we concluded that the nucleic acids molecule internalization step is the most important barrier affected by Lutrol®. Microscopic examination of transfected cells pre-treated with Lutrol® confirmed that more plasmid DNA copies were internalized. Absence of cationic lipid did not impair Lutrol®-mediated DNA internalization, but critically impaired endosomal escape. Our results strongly suggest that in vivo, Lutrol® improves transfection by a physicochemical mechanism, leading to cellular uptake enhancement through a direct delivery into the cytoplasm, and not via endosomal pathways.

0 Bookmarks
 · 
140 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents--specifically citric acid (CA) and tannic acid (TA)--were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.
    Applied biochemistry and biotechnology 05/2012; 167(2):327-37. · 1.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advancement of gene-based therapeutics to the clinic is limited by the ability to deliver physiologically relevant doses of nucleic acids to target tissues safely and effectively. Over the last couple of decades, researchers have successfully employed polymer and lipid based nanoassemblies to deliver nucleic acids for the treatment of a variety of diseases. Results of phase I/II clinical studies to evaluate the efficacy and biosafety of these gene delivery vehicles have been encouraging, which has promoted the design of more efficient and biocompatible systems. Research has focused on designing carriers to achieve biocompatibility, stability in the circulatory system, biodistribution to target the disease site, and intracellular delivery, all of which enhance the resulting therapeutic effect. The family of poly(alkylene oxide) (PAO) polymers includes random, block, and branched structures, among which the ABA type triblocks copolymers of ethylene oxide (EO) and propylene oxide (PO) (commercially known as Pluronic) have received the greatest consideration. In this Account, we highlight examples of polycation-PAO conjugates, liposome-PAO formulations, and PAO micelles for nucleic acid delivery. Among the various polymer design considerations, which include molecular weight of polymer, molecular weight of blocks, and length of blocks, the overall hydrophobic-lipophilic balance (HLB) is a critical parameter in defining the behavior of the polymer conjugates for gene delivery. We discuss the effects of varying this parameter in the context of improving gene delivery processes, such as serum stability and association with cell membranes. Other innovative macromolecular modifications discussed in this category include our work to enhance the serum stability and efficiency of lipoplexes using PAO graft copolymers, the development of a PAO gel-based carrier for sustained and stimuli responsive delivery, and the development of biodegradable PAO-based amphiphilic block copolymers.
    Accounts of Chemical Research 01/2012; 45(7):1057-66. · 20.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Amphiphilic block copolymers acting as biological response modifiers provide an attractive approach to improving the transfection efficiency of polycationic polymer/DNA complexes (polyplexes) by altering cellular processes crucial to efficient transgene expression. The objective of this study was to investigate the effect of the poloxamine Tetronic T904, a 4-arm polyethylene oxide / polypropylene oxide block copolymer, on polyplex transfection and determine its mechanism of action by analyzing cellular uptake of polyplex, nuclear localization of plasmid, and RNA transcript production. T904 significantly increased the transfection efficiency of polyplexes based on 25 kDa branched polyethylenimine in a dose-dependent manner in the presence of serum in C6 glioma cells, as well as human fibroblasts and mesenchymal stem cells. The activity of T904 was not promoter-dependent, increasing expression of reporter genes under both CMV and SV40 promoters. While T904 did not affect internalization or nuclear uptake of plasmid, mRNA expression levels from both promoters showed dose-dependent increases that closely paralleled increases in gene expression. This study demonstrates that T904 significantly increases polyplex transfection efficiency and suggests a mechanism of increased transcriptional activity. As a 4-arm, hydroxyl-terminated polymer, T904 is amenable to a variety of end group functionalization and covalent crosslinking strategies that have been developed for preparing hydrogels from multi-arm polyethylene glycol, making it particularly attractive for scaffold-mediated gene delivery. This article is protected by copyright. All rights reserved.
    The Journal of Gene Medicine 06/2013; · 2.16 Impact Factor

Full-text (2 Sources)

View
18 Downloads
Available from
May 31, 2014