Article

Amphiphilic block copolymers enhance the cellular uptake of DNA molecules through a facilitated plasma membrane transport

INSERM, U915, l'institut du thorax, Nantes, F-44000, France.
Nucleic Acids Research (Impact Factor: 9.11). 10/2010; 39(4):1610-22. DOI: 10.1093/nar/gkq922
Source: PubMed

ABSTRACT Amphiphilic block copolymers have been developed recently for their efficient, in vivo transfection activities in various tissues. Surprisingly, we observed that amphiphilic block copolymers such as Lutrol® do not allow the transfection of cultured cells in vitro, suggesting that the cell environment is strongly involved in their mechanism of action. In an in vitro model mimicking the in vivo situation we showed that pre-treatment of cells with Lutrol®, prior to their incubation with DNA molecules in the presence of cationic lipid, resulted in higher levels of reporter gene expression. We also showed that this improvement in transfection efficiency associated with the presence of Lutrol® was observed irrespective of the plasmid promoter. Considering the various steps that could be improved by Lutrol®, we concluded that the nucleic acids molecule internalization step is the most important barrier affected by Lutrol®. Microscopic examination of transfected cells pre-treated with Lutrol® confirmed that more plasmid DNA copies were internalized. Absence of cationic lipid did not impair Lutrol®-mediated DNA internalization, but critically impaired endosomal escape. Our results strongly suggest that in vivo, Lutrol® improves transfection by a physicochemical mechanism, leading to cellular uptake enhancement through a direct delivery into the cytoplasm, and not via endosomal pathways.

0 Followers
 · 
177 Views
  • Source
    • "Synthetic delivery system (SDS) consisting of tetra-functional block copolymers (TFBC) demonstrated of a dramatic enhancement of target protein expression in preclinical models [33] [34] [35], maximizing access of the plasmid DNA to the cytosol, with activation of DNA sensors that trigger an innate immune response. Benefiting of this expertise, we set up a DNA vaccine model using the TFBC 704, which is under regulatory development for the treatment by vaccination of the human hepatocellular-carcinoma, to document the protective role of MA-PLC immunization in CF hosts using F508 (the most frequent CF mutation) mutated mice [36] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Vaccine strategies represent one of the fighting answers against multiresistant bacteria in a number of clinical settings like cystic fibrosis (CF). Mycobacterium abscessus, an emerging CF pathogen, raises difficult therapeutic problems due to its intrinsic antibiotic multiresistance. By reverse vaccinology, we identified M. abscessus phospholipase C (MA-PLC) as a potential vaccine target. We deciphered here the protective response generated by vaccination with plasmid DNA encoding the MA-PLC formulated with a tetra functional block copolymer 704, in CF (ΔF508) mice. Protection was tested against aerosolized smooth and rough (hypervirulent) variants of M. abscessus. MA-PLC DNA vaccination (days 0, 21, 42) elicited a strong antibody response. A significant protective effect was obtained against aerosolized M. abscessus (S variant) in ΔF508 mice, but not in wild-type FVB littermates; similar results were observed when: (i) challenging mice with the "hypervirulent" R variant, and; (ii) immunizing mice with purified MA-PLC protein. High IgG titers against MA-PLC protein were measured in CF patients with M. abscessus infection; interestingly, significant titers were also detected in CF patients positive for Pseudomonas aeruginosa versus P. aeruginosa-negative controls. MA-PLC DNA- and PLC protein-vaccinated mice cleared more rapidly M. abscessus than β-galactosidase DNA- or PBS- vaccinated mice in the context of CF. PLCs could constitute interesting vaccine targets against common PLC-producing CF pathogens like P. aeruginosa. Copyright © 2015. Published by Elsevier Ltd.
    Vaccine 03/2015; 33(18). DOI:10.1016/j.vaccine.2015.03.030 · 3.49 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advancement of gene-based therapeutics to the clinic is limited by the ability to deliver physiologically relevant doses of nucleic acids to target tissues safely and effectively. Over the last couple of decades, researchers have successfully employed polymer and lipid based nanoassemblies to deliver nucleic acids for the treatment of a variety of diseases. Results of phase I/II clinical studies to evaluate the efficacy and biosafety of these gene delivery vehicles have been encouraging, which has promoted the design of more efficient and biocompatible systems. Research has focused on designing carriers to achieve biocompatibility, stability in the circulatory system, biodistribution to target the disease site, and intracellular delivery, all of which enhance the resulting therapeutic effect. The family of poly(alkylene oxide) (PAO) polymers includes random, block, and branched structures, among which the ABA type triblocks copolymers of ethylene oxide (EO) and propylene oxide (PO) (commercially known as Pluronic) have received the greatest consideration. In this Account, we highlight examples of polycation-PAO conjugates, liposome-PAO formulations, and PAO micelles for nucleic acid delivery. Among the various polymer design considerations, which include molecular weight of polymer, molecular weight of blocks, and length of blocks, the overall hydrophobic-lipophilic balance (HLB) is a critical parameter in defining the behavior of the polymer conjugates for gene delivery. We discuss the effects of varying this parameter in the context of improving gene delivery processes, such as serum stability and association with cell membranes. Other innovative macromolecular modifications discussed in this category include our work to enhance the serum stability and efficiency of lipoplexes using PAO graft copolymers, the development of a PAO gel-based carrier for sustained and stimuli responsive delivery, and the development of biodegradable PAO-based amphiphilic block copolymers.
    Accounts of Chemical Research 01/2012; 45(7):1057-66. DOI:10.1021/ar200232n · 24.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles exhibit unique spectral properties that make them ideal for biosensing, imaging, drug delivery, and other therapeutic applications. Interaction of gold nanoparticles within biological environments is dependent on surface characteristics, which may rely on particular capping agents. In this study, gold nanospheres (GNS) synthesized with different capping agents--specifically citric acid (CA) and tannic acid (TA)--were compared for serum protein adsorption and cellular uptake into a lung epithelial cell line (A549). Both GNS samples exhibited noticeable protein adsorption based on surface charge data after exposure to serum proteins. Light scattering measurements revealed that GNS-CA-protein composites were smaller and less dense compared to GNS-TA-protein composites. The cell uptake characteristics of these nanoparticles were also different. GNS-CA formed large clusters and elicited high uptake, while GNS-TA were taken up as discrete particles, possibly through nonendosomal mechanisms. These results indicate that the capping agents used for GNS synthesis result in unique biological interactions.
    Applied biochemistry and biotechnology 05/2012; 167(2):327-37. DOI:10.1007/s12010-012-9666-z · 1.74 Impact Factor
Show more