Article

Effects of Morphogen and Scaffold Porogen on the Differentiation of Dental Pulp Stem Cells

Department of Cariology, Restorative Sciences, Endodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
Journal of endodontics (Impact Factor: 2.79). 11/2010; 36(11):1805-11. DOI: 10.1016/j.joen.2010.08.031
Source: PubMed

ABSTRACT Dental pulp tissue engineering is an emerging field that can potentially have a major impact on oral health. However, the source of morphogens required for stem cell differentiation into odontoblasts and the scaffold characteristics that are more conducive to odontoblastic differentiation are still unclear. This study investigated the effect of dentin and scaffold porogen on the differentiation of human dental pulp stem cells (DPSCs) into odontoblasts.
Poly-L-lactic acid (PLLA) scaffolds were prepared in pulp chambers of extracted human third molars using salt crystals or gelatin spheres as porogen. DPSCs seeded in tooth slice/scaffolds or control scaffolds (without tooth slice) were either cultured in vitro or implanted subcutaneously in immunodefficient mice.
DPSCs seeded in tooth slice/scaffolds but not in control scaffolds expressed putative odontoblastic markers (DMP-1, DSPP, and MEPE) in vitro and in vivo. DPSCs seeded in tooth/slice scaffolds presented lower proliferation rates than in control scaffolds between 7 and 21 days (p < 0.05). DPSCs seeded in tooth slice/scaffolds and transplanted into mice generated a tissue with morphological characteristics similar to those of human dental pulps. Scaffolds generated with gelatin or salt porogen resulted in similar DPSC proliferation. The porogen type had a relatively modest impact on the expression of the markers of odontoblastic differentiation.
Collectively, this work shows that dentin-related morphogens are important for the differentiation of DPSC into odontoblasts and for the engineering of dental pulp-like tissues and suggest that environmental cues influence DPSC behavior and differentiation potential.

4 Followers
 · 
225 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Periodontal disease is one of the most common conditions affecting humans, and current treatment strategies, which focus on the removal and long-term control of dental plaque, are generally successful in eliminating active disease and promoting tissue repair. However, regeneration of the supporting structures of the tooth remains an elusive goal and a challenge. The formation of new bone and cementum with supportive periodontal ligament is the ultimate objective, but current regeneration therapies are incapable of achieving this in a predictable way. The regeneration of periodontal tissue requires a combination of fundamental events, such as appropriate level and sequencing of regulatory signals, the presence of progenitor cells, an extracellular matrix or carrier and an adequate blood supply. Based on tissue-engineering concepts, the regeneration process may be modulated by manipulating the signaling pathways of regulatory molecules, the extracellular matrix or scaffold, or the cellular components. The identification of mesenchymal stem cells from bone marrow started a new era in regenerative medicine. Tissue engineering using mesenchymal stem cells became a therapeutic option with several advantages, including high-quality regeneration of damaged tissues without the formation of fibrous tissue, minimal donor-site morbidity compared with autografts and a low risk of autoimmune rejection and disease transmission. The aim of this review was to describe the main sources of mesenchymal stem cells from tissues in the oral cavity and the potential of these cells in regenerative therapy. Special attention is paid to gingival tissue-derived mesenchymal stem cells because they represent the most accessible source of stem cells in the human mouth.
    Periodontology 2000 02/2015; 67(1). DOI:10.1111/prd.12070 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Critical morphological requirements for pulp regeneration are tissues replete with vascularisation, neuron formation, and dentin deposition. Autophagy was recently shown to be related to angiogenesis, neural differentiation, and osteogenesis. The present study aimed to investigate the involvement of autophagy in stromal cell-derived factor-1α (SDF-1α)-mediated dental pulp stem cell (DPSC) migration and pulp regeneration, and identify its presence during pulp revascularisation of pulpectomised dog teeth with complete apical closure. In vitro studies showed that SDF-1α enhanced DPSCs migration and optimised focal adhesion formation and stress fibre assembly, which were accompanied by autophagy. Moreover, autophagy inhibitors significantly suppressed, whereas autophagy activator substantially augmented SDF-1α-stimulated DPSCs migration. Furthermore, after ectopic transplantation of tooth fragment/silk fibroin scaffold with DPSCs into nude mice, pulp-like tissues with vascularity, well-organised fibrous matrix formation, and new dentin deposition along the dentinal wall were generated in SDF-1α-loaded samples accompanied by autophagy. More importantly, in a pulp revascularisation model in situ, SDF-1α-loaded silk fibroin scaffolds improved the de novo ingrowth of pulp-like tissues in pulpectomised mature dog teeth, which correlated with the punctuated LC3 and Atg5 expressions, indicating autophagy. Our findings provide novel insights into the pulp regeneration mechanism, and SDF-1α shows promise for future clinical application in pulp revascularisation.
    Biomaterials 03/2015; 44. DOI:10.1016/j.biomaterials.2014.12.006 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dental pulp, while exquisitely small, is extremely interesting. Its study has shed much light on basic biological processes such as protein production, mineralization, microvascular physiology, inflammation, pain, and most recently stem cell biology. The accumulation of knowledge on the dental pulp has been rapid over the past 30 years. With such efforts, one might think that our knowledge of the dental pulp is nearly complete, but this is not so. With the dental pulp, as with all other tissues, research always finds more questions than answers. For the specialty of Endodontics, knowledge of the tissue has reached such a point that newer, biological therapies are or shortly will be available whose effective application requires a good understanding of the biology involved. Clearly any review must be selective and will inevitably be incomplete, biased, and confused.
    Endodontic Topics 11/2014; 31(1). DOI:10.1111/etp.12064