Article

Colitis and intestinal inflammation in IL10-/- mice results from IL-13Rα2-mediated attenuation of IL-13 activity.

Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
Gastroenterology (Impact Factor: 13.93). 10/2010; 140(1):254-64. DOI: 10.1053/j.gastro.2010.09.047
Source: PubMed

ABSTRACT The cytokine interleukin (IL)-10 is required to maintain immune homeostasis in the gastrointestinal tract. IL-10 null mice spontaneously develop colitis or are more susceptible to induction of colitis by infections, drugs, and autoimmune reactions. IL-13 regulates inflammatory conditions; its activity might be compromised by the IL-13 decoy receptor (IL-13Rα2).
We examined the roles of IL-13 and IL-13Rα2 in intestinal inflammation in mice. To study the function of IL-13Rα2, il10(-/-) mice were crossed with il13rα2(-/-) to generate il10(-/-)il13rα2(-/-) double knockout (dKO) mice. Colitis was induced with the gastrointestinal toxin piroxicam or Trichuris muris infection.
Induction of colitis by interferon (IFN)-γ or IL-17 in IL-10 null mice requires IL-13Rα2. Following exposure of il10(-/-) mice to piroxicam or infection with T muris, production of IL-13Rα2 increased, resulting in decreased IL-13 bioactivity and increased inflammation in response to IFN-γ or IL-17A. In contrast to il10(-/-) mice, dKO mice were resistant to piroxicam-induced colitis; they also developed less severe colitis during chronic infection with T muris infection. In both models, resistance to IFN-γ and IL-17-mediated intestinal inflammation was associated with increased IL-13 activity. Susceptibility to colitis was restored when the dKO mice were injected with monoclonal antibodies against IL-13, confirming its protective role.
Colitis and intestinal inflammation in IL10(-/-) mice results from IL-13Rα2-mediated attenuation of IL-13 activity. In the absence of IL-13Rα2, IL-13 suppresses proinflammatory Th1 and Th17 responses. Reagents that block the IL-13 decoy receptor IL-13Rα2 might be developed for inflammatory bowel disease associated with increased levels of IFN-γ and IL-17.

0 Followers
 · 
242 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: MS is an autoimmune disease and interleukin 13 (IL-13) has been proposed to be an important neuroprotective mediator in MS. Because of plausible effect of single nucleotide polymorphisms (SNPs) in expression level or biological activity of any cytokine, we sought to investigate association of IL-13 SNPs, C-1112T, A-1512C and G+2044A, with risk to MS. Sixty-eight RRMS patients and 110 healthy controls were involved in this study. After extraction of genomic DNA, frequency of genotypes and alleles were determined by PCR-RFLP and data were analyzed statistically. Results showed significant higher frequency of CC, CC, and AA genotypes and C, C, and A alleles of -1112CT, -1512AC and +2044GA SNPs respectively, in patients group. There was significant association between -1112C allele with onset age of MS. No significant association was seen between any of genotypes or alleles with expanded disability status scale (EDSS) of patients. Our findings showed significant association between three studied SNPs of IL-13 with susceptibility to MS in Iranian patients. More studies should be done on other IL-13 SNPs, and also polymorphisms of IL-13 receptor and other cytokines to determine the exact role of SNPs in protecting or predisposing of individuals for MS.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection of laboratory mice with murine noroviruses (MNV) is widely prevalent. MNV alters various mouse models of disease, including the Helicobacter bilis-induced mouse model of inflammatory bowel disease (IBD) in Mdr1a(--) mice. To further characterize the effect of MNV on IBD, we used mice deficient in the immunoregulatory cytokine IL10 (Il10(-/-) mice). In vitro infection of Il10(-/-) bone marrow-derived macrophages (BMDM) with MNV4 cocultured with H. bilis antigens increased the gene expression of the proinflammatory cytokines IL1β, IL6, and TNFα as compared with that of BMDM cultured with H. bilis antigens only. Therefore, to test the hypothesis that MNV4 infection increases inflammation and alters disease phenotype in H. bilis-infected Il10(-/-) mice, we compared the amount and extent of inflammation in Il10(-/-) mice coinfected with H. bilis and MNV4 with those of mice singly infected with H. bilis. IBD scores, incidence of IBD, or frequency of severe IBD did not differ between mice coinfected with H. bilis and MNV4 and those singly infected with H. bilis. Mice infected with MNV4 only had no appreciable IBD, comparable to uninfected mice. Our findings suggest that, unlike in Mdr1a(-/-) mice, the presence of MNV4 in Il10(-/-) mouse colonies is unlikely to affect the IBD phenotype in a Helicobacter-induced model. However, because MNV4 altered cytokine expression in vitro, our results highlight the importance of determining the potential influence of MNV on mouse models of inflammatory disease, given that MNV has a tropism for macrophages and dendritic cells and that infection is widely prevalent.
    Comparative medicine 08/2014; 64(4):256-263. · 0.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background In the respiratory mucosa, interleukin (IL)-33, has been shown to enhance T helper 2 (TH2)-type responses through the master regulatory gene GATA-3. IL-33 is upregulated in ulcerative colitis (UC), and the aim was to assess if IL-33 holds a similar key position in the shaping of the immune response in experimental colitis (piroxicam-accelerated colitis (PAC) in IL-10 −/− mice, dextran sodium sulfate (DSS) model) and UC. Methods Colonic IL-33 expression was determined in UC (8 active UC, 8 quiescent UC, and 7 controls) and experimental colitis. Mesenteric lymph node (MesLN) T cells were isolated from PAC IL-10 −/− mice and stimulated with IL-33. Results The colonic IL-33 expression was significantly upregulated all forms of colitis (P P GATA-3 expression levels (P H1-specific T-bet expression was observed. MesLN T cells stimulated with IL-33 had increased GATA-3 expression, and showed an IL-33 dose-dependent increase in secreted TH2-type cytokines, whereas this effect was abolished by blocking IL-33 signaling. The non-TH2-type cytokine IL-17 was upregulated by IL-33 but in a T cell receptor dependent manner, as opposed to TH2-type cytokines, which required only IL-33 stimulation. Conclusions The study demonstrates that intestinal IL-33 is capable of inducing GATA-3 in mucosal T cells, and suggests that IL-33 is a key mediator of pathological TH2 and non-TH2-type responses in intestinal inflammation. Blocking IL-33 signaling could be a feasible option in the treatment of UC.
    Journal of Gastroenterology 08/2014; 50(2). DOI:10.1007/s00535-014-0982-7 · 4.02 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 21, 2014