Article

Germline KRAS Mutations Cause Aberrant Biochemical and Physical Properties Leading to Developmental Disorders

Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University, Düsseldorf, Germany.
Human Mutation (Impact Factor: 5.05). 01/2011; 32(1):33-43. DOI: 10.1002/humu.21377
Source: PubMed

ABSTRACT The KRAS gene is the most common locus for somatic gain-of-function mutations in human cancer. Germline KRAS mutations were shown recently to be associated with developmental disorders, including Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFCS), and Costello syndrome (CS). The molecular basis of this broad phenotypic variability has in part remained elusive so far. Here, we comprehensively analyzed the biochemical and structural features of ten germline KRAS mutations using physical and cellular biochemistry. According to their distinct biochemical and structural alterations, the mutants can be grouped into five distinct classes, four of which markedly differ from RAS oncoproteins. Investigated functional alterations comprise the enhancement of intrinsic and guanine nucleotide exchange factor (GEF) catalyzed nucleotide exchange, which is alternatively accompanied by an impaired GTPase-activating protein (GAP) stimulated GTP hydrolysis, an overall loss of functional properties, and a deficiency in effector interaction. In conclusion, our data underscore the important role of RAS in the pathogenesis of the group of related disorders including NS, CFCS, and CS, and provide clues to the high phenotypic variability of patients with germline KRAS mutations.

Download full-text

Full-text

Available from: Martin Zenker, Jun 28, 2015
0 Followers
 · 
128 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ras/MAPK syndromes (‘RASopathies’) are a class of developmental disorders caused by germline mutations in 15 genes encoding proteins of the Ras/mitogen-activated protein kinase (MAPK) pathway frequently involved in cancer. Little is known about the molecular mechanisms underlying the differences in mutations of the same protein causing either cancer or RASopathies. Here, we shed light on 956 RASopathy and cancer missense mutations by combining protein network data with mutational analyses based on 3D structures. Using the protein design algorithm FoldX, we predict that most of the missense mutations with destabilising energies are in structural regions that control the activation of proteins, and only a few are predicted to compromise protein folding. We find a trend that energy changes are higher for cancer compared to RASopathy mutations. Through network modelling, we show that partly compensatory mutations in RASopathies result in only minor downstream pathway deregulation. In summary, we suggest that quantitative rather than qualitative network differences determine the phenotypic outcome of RASopathy compared to cancer mutations.
    Molecular Systems Biology 05/2014; 10(5). DOI:10.1002/msb.20145092 · 14.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Noonan syndrome (NS) is the most common non-chromosomal syndrome seen in children and is characterized by short stature, dysmorphic facial features, chest deformity, a wide range of congenital heart defects and developmental delay of variable degree. Mutations in the Ras/mitogen-activated protein kinase (MAPK) signaling pathways cause about 70% of NS cases with a KRAS mutation present in about 2%. In a cohort of 65 clinically confirmed NS patients of Japanese origin, we screened for mutations in the RAS genes by direct sequencing. We found a novel mutation in KRAS with an amino acid substitution of asparagine to serine at codon 116 (N116S). We analyzed the biological activity of this mutant by ectopic expression of wild-type or mutant KRAS. NS-associated KRAS mutation resulted in Erk activation and active Ras-GTP levels, and exhibited mild cell proliferation. In addition, kras-targeted morpholino knocked-down zebrafish embryos caused heart and craniofacial malformations, while the expression of mutated kras resulted in maldevelopment of the heart. Our findings implicate that N116S change in KRAS is a hyperactive mutation which is a causative agent of NS through maldevelopment of the heart.
    American Journal of Medical Genetics Part A 03/2012; 158A(3):524-32. DOI:10.1002/ajmg.a.34419 · 2.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins belonging to the RAS/mitogen activated protein kinase (MAPK) pathway play key roles in cell proliferation, differentiation, survival, and death. For more than 30 years now we have known that 30% of human cancers carry somatic mutations in genes encoding proteins from this pathway. Whereas somatic mutations have a high malignant potential, germline mutations are linked to developmental abnormalities that are often poorly clinically differentiated, although each is dependent upon the specific gene affected. Thus, all patients share varying degrees of mental retardation or learning difficulties, heart disease, facial dysmorphism, skin anomalies, and, in some cases, predisposition to cancer. These syndromes, known as rasopathies, include Noonan syndrome, Costello syndrome, neurofibromatosis-1, LEOPARD syndrome, cardiofaciocutaneous syndrome, and Legius syndrome. Recognizing the skin manifestations of rasopathies can facilitate diagnosis of these syndromes.
    Actas Dermo-Sifiliográficas 01/2011; 102(6):402-16. DOI:10.1016/j.ad.2011.02.010