Drug-Induced Acute Liver Failure: Results of a U.S. Multicenter, Prospective Study

Department of Medicine, Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC 29425-2900, USA.
Hepatology (Impact Factor: 11.06). 12/2010; 52(6):2065-76. DOI: 10.1002/hep.23937
Source: PubMed


Acute liver failure (ALF) due to drug-induced liver injury (DILI), though uncommon, is a concern for both clinicians and patients. The Acute Liver Failure Study Group has prospectively collected cases of all forms of acute liver failure since 1998. We describe here cases of idiosyncratic DILI ALF enrolled during a 10.5-year period. Data were collected prospectively, using detailed case report forms, from 1198 subjects enrolled at 23 sites in the United States, all of which had transplant services. A total of 133 (11.1%) ALF subjects were deemed by expert opinion to have DILI; 81.1% were considered highly likely, 15.0% probable, and 3.8% possible. Subjects were mostly women (70.7%) and there was overrepresentation of minorities for unclear reasons. Over 60 individual agents were implicated, the most common were antimicrobials (46%). Transplant-free (3-week) survival was poor (27.1%), but with highly successful transplantation in 42.1%, overall survival was 66.2%. Transplant-free survival in DILI ALF is determined by the degree of liver dysfunction, specifically baseline levels of bilirubin, prothrombin time/international normalized ratio, and Model for End-Stage Liver Disease scores. Conclusion: DILI is an uncommon cause of ALF that evolves slowly, affects a disproportionate number of women and minorities, and shows infrequent spontaneous recovery, but transplantation affords excellent survival.

29 Reads
  • Source
    • "Drug-induced Liver Injury (DILI) accounts for approximately 11–13% of acute liver-failure cases in the United States and is the most common cause of death related to this condition (Reuben et al., 2010). It is of extreme importance to detect hepatotoxic candidates as early as possible during the drug development process and before clinical phases. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Drug Induced Liver Injury (DILI) is a major cause of attrition during early and late stage drug development. Consequently, there is a need to develop better in vitro primary hepatocyte models from different species for predicting hepatotoxicity in both animals and humans early in drug development. Dog is often chosen as the non-rodent species for toxicology studies. Unfortunately, dog in vitro models allowing long term cultures are not available. The objective of the present manuscript is to describe the development of a co-culture dog model for predicting hepatotoxic drugs in humans and to compare the predictivity of the canine model along with primary human hepatocytes and HepG2 cells. After rigorous optimization, the dog co-culture model displayed metabolic capacities that were maintained up to 2weeks which indicates that such model could be also used for long term metabolism studies. Most of the human hepatotoxic drugs were detected with a sensitivity of approximately 80% (n=40) for the three cellular models. Nevertheless, the specificity was low approximately 40% for the HepG2 cells and hepatocytes compared to 72.7% for the canine model (n=11). Furthermore, the dog co-culture model showed a higher superiority for the classification of 5 pairs of close structural analogs with different DILI concerns in comparison to both human cellular models. Finally, the reproducibility of the canine system was also satisfactory with a coefficient of correlation of 75.2% (n=14). Overall, the present manuscript indicates that the dog co-culture model may represent a relevant tool to perform chronic hepatotoxicity and metabolism studies.
    Toxicology and Applied Pharmacology 12/2013; 275(1). DOI:10.1016/j.taap.2013.11.022 · 3.71 Impact Factor
  • Source
    • "Drug-induced liver injury (DILI) is a major reason for drug failures in clinical trials, for withdrawal from the market or 'black box warnings' issued by the US Food and Drug Administration [1,2]. More than 1,000 drugs are suspected to cause liver injury in humans [3,4] and DILI accounts for more than 50% of acute liver failures (ALFs), with acetaminophen (APAP) hepatotoxicity far exceeding other causes of ALF in the United States [5]. It is perplexing that despite vigorous and extensive safety testing, animal studies fail to identify about 50% of drugs causing liver toxicity in clinical trials [6]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Acetaminophen (APAP) is a commonly used analgesic. However, its use is associated with drug-induced liver injury (DILI). It is a prominent cause of acute liver failure, with APAP hepatotoxicity far exceeding other causes of acute liver failure in the United States. In order to improve its safe use this study aimed to identify individuals at risk for DILI prior to drug treatment by searching for non-genetic serum markers in healthy subjects susceptible to APAP-induced liver injury (AILI). Methods Healthy volunteers (n = 36) received either placebo or acetaminophen at the maximum daily dose of 4 g for 7 days. Blood samples were taken prior to and after APAP treatment. Serum proteomic profiling was done by 2D SDS-PAGE and matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. Additionally, the proteins C-reactive protein, haptoglobin and hemopexin were studied by quantitative immunoassays. Results One-third of study subjects presented more than four-fold increased alanine transaminase activity to evidence liver injury, while serum proteomics informed on 20 proteins as significantly regulated. These function primarily in acute phase and immune response. Pre-treatment associations included C-reactive protein, haptoglobin isoforms and retinol binding protein being up to six-fold higher in AILI susceptible individuals, whereas alpha1-antitrypsin, serum amyloid A, kininogen and transtyretin were regulated by nearly five-fold in AILI responders. When compared with published findings for steatohepatitis and cases of hepatocellular, cholestatic and mixed DILI, 10 proteins were identified as uniquely associated with risk for AILI, including plasminogen. Notably, this zymogen facilitates macrophage chemotactic migration and inflammatory response as reported for plasminogen-deficient mice shown to be resistant to APAP hepatotoxicity. Finally, analysis of a publicly available database of gene expression profiles of cultures of human hepatocytes treated with drugs labeled as no- (n = 8), low- (n = 45) or most-DILI-concern (n = 39) confirmed regulation of the identified biomarkers to demonstrate utility in predicting risk for liver injury. Conclusions The significant regulation of acute phase reactants points to an important link between AILI and the immune system. Monitoring of serum acute phase reactants prior to drug treatment may contribute to prevention and management of AILI, and may also be of utility for other drugs with known liver liabilities.
    Genome Medicine 09/2013; 5(9):86. DOI:10.1186/gm493 · 5.34 Impact Factor
  • Source
    • "Acute liver injury is one of the more common reasons for withdrawal of drugs from the market, or for interruption of their development [1–3]. NSAIDs have often been involved in liver injury [1, 4], and adverse hepatic reactions have been reported for most NSAIDs [5]. However, general population studies have not found a clear difference between NSAIDs for hepatic reactions not leading to transplantation [6, 7]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Most NSAIDs are thought to be able to cause hepatic injury and acute liver failure (ALF), but the event rates of those leading to transplantation (ALFT) remain uncertain. Objectives: The aim of the study was to estimate population event rates for NSAID-associated ALFT METHODS: This was a case-population study of ALFT in 57 eligible liver transplant centres in seven countries (France, Greece, Ireland, Italy, The Netherlands, Portugal and the UK). Cases were all adults registered from 2005 to 2007 for a liver transplant following ALFT without identified clinical aetiology, exposed to an NSAID or paracetamol (acetaminophen) within 30 days before the onset of clinical symptoms. NSAID and paracetamol population exposures were assessed using national sales data from Intercontinental Marketing Services (IMS). Risk was estimated as the rate of ALFT per million treatment-years (MTY). Results: In the 52 participating centres, 9479 patients were registered for transplantation, with 600 for ALFT, 301 of whom, without clinical aetiology, had been exposed to a drug within 30 days. Of these 301 patients, 40 had been exposed to an NSAID and 192 to paracetamol (81 of whom were without overdose). Event rates per MTY were 1.59 (95 % CI 1.1-2.2) for all NSAIDs pooled, 2.3 (95 % CI 1.2-3.9) for ibuprofen, 1.9 (95 % CI 0.8-3.7) for nimesulide, 1.6 (95 % CI 0.6-3.4) for diclofenac and 1.6 (95 % CI 0.3-4.5) for ketoprofen. For paracetamol, the event rate was 3.3 per MTY (95 % CI 2.6-4.1) without overdoses and 7.8 (95 % CI 6.8-9.0) including overdoses. Conclusions: ALF leading to registration for transplantation after exposure to an NSAID was rare, with no major difference between NSAID. Non-overdose paracetamol-exposed liver failure was twice more common than NSAID-exposed liver failure.
    Drug Safety 01/2013; 36(2). DOI:10.1007/s40264-012-0013-7 · 2.82 Impact Factor
Show more


29 Reads