Article

Characterization of LINE-1 ribonucleoprotein particles.

Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, France.
PLoS Genetics (Impact Factor: 8.52). 10/2010; 6(10). DOI: 10.1371/journal.pgen.1001150
Source: PubMed

ABSTRACT The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1-encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition.

2 Bookmarks
 · 
155 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001.
    eLife Sciences 04/2014; 3:e02008. · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.
    Mobile genetic elements. 01/2014; 4:e29319.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: LINE-1 (L1) elements are the only active and autonomous transposable elements in humans. The core retrotransposition machinery is a ribonucleoprotein particle (RNP) containing the L1 mRNA, with endonuclease and reverse transcriptase activities. It initiates reverse transcription directly at genomic target sites upon endonuclease cleavage. Recently, using a direct L1 extension assay (DLEA), we systematically tested the ability of native L1 RNPs to extend DNA substrates of various sequences and structures. We deduced from these experiments the general rules guiding the initiation of L1 reverse transcription, referred to as the snap-velcro model. In this model, L1 target choice is not only mediated by the sequence specificity of the endonuclease, but also through base-pairing between the L1 mRNA and the target site, which permits the subsequent L1 reverse transcription step. In addition, L1 reverse transcriptase efficiently primes L1 DNA synthesis only when the 3' end of the DNA substrate is single-stranded, suggesting so-far unrecognized DNA processing steps at the integration site.
    Mobile genetic elements. 01/2014; 4(1):e28907.

Full-text (2 Sources)

Download
83 Downloads
Available from
May 29, 2014