Article

Allelopathic effects of water hyacinth [Eichhornia crassipes].

Botany Department, Faculty of Science, Cairo University, Giza, Egypt.
PLoS ONE (Impact Factor: 3.73). 01/2010; 5(10):e13200. DOI: 10.1371/journal.pone.0013200
Source: PubMed

ABSTRACT Eichhornia crassipes (Mart) Solms is an invasive weed known to out-compete native plants and negatively affect microbes including phytoplankton. The spread and population density of E. crassipes will be favored by global warming. The aim here was to identify compounds that underlie the effects on microbes. The entire plant of E. crassipes was collected from El Zomor canal, River Nile (Egypt), washed clean, then air dried. Plant tissue was extracted three times with methanol and fractionated by thin layer chromatography (TLC). The crude methanolic extract and five fractions from TLC (A-E) were tested for antimicrobial (bacteria and fungal) and anti-algal activities (green microalgae and cyanobacteria) using paper disc diffusion bioassay. The crude extract as well as all five TLC fractions exhibited antibacterial activities against both the gram positive bacteria; Bacillus subtilis and Streptococcus faecalis; and the gram negative bacteria; Escherichia coli and Staphylococcus aureus. Growth of Aspergillus flavus and Aspergillus niger were not inhibited by either E. crassipes crude extract nor its five fractions. In contrast, Candida albicans (yeast) was inhibited by all. Some antialgal activity of the crude extract and its fractions was manifest against the green microalgae; Chlorella vulgaris and Dictyochloropsis splendida as well as the cyanobacteria; Spirulina platensis and Nostoc piscinale. High antialgal activity was only recorded against Chlorella vulgaris. Identifications of the active antimicrobial and antialgal compounds of the crude extract as well as the five TLC fractions were carried out using gas chromatography combined with mass spectroscopy. The analyses showed the presence of an alkaloid (fraction A) and four phthalate derivatives (Fractions B-E) that exhibited the antimicrobial and antialgal activities.

0 Bookmarks
 · 
309 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study reports the in vitro antioxidant, antibacterial, and cytotoxic potential of Syngonium podophyllum (SP) and Eichhornia crassipes (EC) leaf aqueous extracts as well as their in vivo effect on oxidative stress and hepatic biomarkers in isoniazid induced rats. Phytochemical screening of extracts revealed the presence of flavonoids, terpenoids, reducing sugars, alkaloids, and saponins. Phenolic content in SP and EC extracts was 5.36 ± 0.32 and 10.63 ± 0.13 mg PGE/g, respectively, while flavonoid content was 1.26 ± 0.03 and 0.51 ± 0.03 μg QE/mg, respectively. EC extract exhibited comparatively better antioxidant activity as indicated by reducing power (0.197-0.775), DPPH radical scavenging potential (11%-96%), and metal ion chelating ability (42%-93%). Both the extracts provided 13%-65% protection against lipid peroxidation in rat tissue (liver, kidney, and brain) homogenate. SP and EC extracts exhibited 51% and 43% cytotoxicity against lung cancer (NCI-H322) cell line, respectively. Both extracts demonstrated considerable antibacterial activity against Proteus vulgaris, Salmonella typhi, and Bordetella bronchiseptica. Coadministration of E. crassipes extract with isoniazid in rats accounted for 46% decrease in malondialdehyde content and 21% increase in FRAP value of plasma. It also mitigated the isoniazid induced alterations in serum enzymes (SGOT, SGPT, and ALP), total bilirubin, creatinine, and hemoglobin contents. S. podophyllum extract was found to be hepatotoxic.
    BioMed Research International 01/2014; 2014:459452. · 2.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present study was aimed to isolate bioactive metabolites produced by a fungal endophyte from Helianthus annuus, Capsicum annuum, and Cucumis sativus and to assess their role in seed germination. Culture filtrate of the endophyte HA-3B from H. annuus was significantly inhibitory towards the germination and growth of lettuce seeds. HA-3B was identified as Cladosporium cladosporioides LWL5 through molecular techniques. Different concentrations (100, 500 and 1000 ppm) of the ethyl acetate extract obtained from the culture inhibited the lettuce seed germination. The extract was subjected to column chromatography and a bioassay-guided isolation method, which yielded compounds 1, 2 and an oily fraction. The oily fraction, subjected to fractionation and spectroscopic techniques, resulted in the identification of 31 different constituents. Compounds 1 and 2 were identified and characterized through MS and NMR spectroscopic techniques as benzoic acid. The bioassay results showed that this compound significantly inhibited the growth and germination of lettuce seeds. In conclusion, assessing the role of endophytes harboring essential crop plants can help us to develop potentially eco-friendly herbicides.
    Molecules 01/2013; 18(12):15519-30. · 2.43 Impact Factor

Full-text (2 Sources)

View
88 Downloads
Available from
May 23, 2014