Recent advances in pulse oximetry

F1000 Medicine Reports 08/2009; 1. DOI: 10.3410/M1-66
Source: PubMed

ABSTRACT Conventional pulse oximetry uses two wavelengths of light (red and infrared) transmitted through a finger and a photodetector to analyze arterial hemoglobin oxygen saturation and pulse rate. Recent advances in pulse oximetry include: extended analysis of the photo plethysmographic waveform; use of multiple wavelengths of light to quantify methemoglobin, carboxyhemoglobin and total hemoglobin content in blood; and use of electronic processes to improve pulse oximeter signal processing during conditions of low signal-to-noise ratio. These advances have opened new clinical applications for pulse oximeters that will have an impact on patient monitoring and management.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intraoperative early detection of anemia, identifying toxic levels of carboxyhemoglobin after carbon monoxide exposure and titrating drug dosage to prevent toxic levels of methemoglobin are important goals. The pulse oximeter works by illuminating light into the tissue and sensing the amount of light absorbed. The same methodology is used by laboratory hemoglobinometers to measure hemoglobin concentration. Because both devices work in the same way, efforts were made to modify the pulse oximeter to also measure hemoglobin concentration. Currently there are 2 commercial pulse oximeters (Masimo Rainbow SET and OrSense NBM-200MP) that measure total hemoglobin concentration and one (Masimo) that also measures methemoglobin and carboxyhemoglobin. In this review, we describe the peer-reviewed literature addressing the accuracy of these monitors.
    Anesthesia and analgesia 09/2011; 114(5):972-8. DOI:10.1213/ANE.0b013e318233041a · 3.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Standard as well as multiwavelength pulse oximetry as established methods for measuring blood oxygen saturation or fractions of dyshemoglobins suffer from different kinds of interference and noise. Employing lock-in technique as a read-out approach for multiwavelength pulse oximetry is proposed here and strongly decreases such signal disturbance. An analog lock-in amplifier was designed to modulate multiple LEDs simultaneously and to separate the signals detected by a single photodiode. In vivo measurements show an improved signal-to-noise ratio of photoplethysmographic signals and a suppression of interference by means of the lock-in approach. This allows the detection of higher order overtones and, therefore, more detailed data for pulse wave analysis, especially for implantable sensors directly applied at arteries.
    Conference proceedings: ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference 07/2013; 2013:495-498. DOI:10.1109/EMBC.2013.6609545
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxygen saturation in the arterial blood (SaO2) provides information on the adequacy of respiratory function. SaO2 can be assessed noninvasively by pulse oximetry, which is based on photoplethysmographic pulses in two wavelengths, generally in the red and infrared regions. The calibration of the measured photoplethysmographic signals is performed empirically for each type of commercial pulse-oximeter sensor, utilizing in vitro measurement of SaO2 in extracted arterial blood by means of co-oximetry. Due to the discrepancy between the measurement of SaO2 by pulse oximetry and the invasive technique, the former is denoted as SpO2. Manufacturers of pulse oximeters generally claim an accuracy of 2%, evaluated by the standard deviation (SD) of the differences between SpO2 and SaO2, measured simultaneously in healthy subjects. However, an SD of 2% reflects an expected error of 4% (two SDs) or more in 5% of the examinations, which is in accordance with an error of 3%-4%, reported in clinical studies. This level of accuracy is sufficient for the detection of a significant decline in respiratory function in patients, and pulse oximetry has been accepted as a reliable technique for that purpose. The accuracy of SpO2 measurement is insufficient in several situations, such as critically ill patients receiving supplemental oxygen, and can be hazardous if it leads to elevated values of oxygen partial pressure in blood. In particular, preterm newborns are vulnerable to retinopathy of prematurity induced by high oxygen concentration in the blood. The low accuracy of SpO2 measurement in critically ill patients and newborns can be attributed to the empirical calibration process, which is performed on healthy volunteers. Other limitations of pulse oximetry include the presence of dyshemoglobins, which has been addressed by multiwavelength pulse oximetry, as well as low perfusion and motion artifacts that are partially rectified by sophisticated algorithms and also by reflection pulse oximetry.
    Medical Devices: Evidence and Research 01/2014; 7:231-9. DOI:10.2147/MDER.S47319

Full-text (2 Sources)

Available from
Aug 7, 2014