Article

Interfractional variations in the setup of pelvic bony anatomy and soft tissue, and their implications on the delivery of proton therapy for localized prostate cancer.

Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA 02114, USA.
International journal of radiation oncology, biology, physics (Impact Factor: 4.18). 10/2010; 80(3):928-37. DOI: 10.1016/j.ijrobp.2010.08.006
Source: PubMed

ABSTRACT To quantify daily variations in the anatomy of patients undergoing radiation therapy for prostate carcinoma, to estimate their effect on dose distribution, and to evaluate the effectiveness of current standard planning and setup approaches employed in proton therapy.
We used series of computed tomography data, which included the pretreatment scan, and between 21 and 43 in-room scans acquired on different treatment days, from 10 patients treated with intensity-modulated radiation therapy at Morristown Memorial Hospital. Variations in femur rotation angles, thickness of subcutaneous adipose tissue, and physical depth to the distal surface of the prostate for lateral beam arrangement were recorded. Proton dose distributions were planned with the standard approach. Daily variations in the location of the prescription isodose were evaluated.
In all 10 datasets, substantial variation was observed in the lateral tissue thickness (standard deviation of 1.7-3.6 mm for individual patients, variations of >5 mm from the planning computed tomography observed in all series), and femur rotation angle (standard deviation between 1.3° and 4.8°, with the maximum excursion exceeding 10° in 6 of 10 datasets). Shifts in the position of treated volume (98% isodose) were correlated with the variations in the lateral tissue thickness.
Analysis suggests that, combined with image-guided setup verification, the range compensator expansion technique prevents loss of dose to target from femur rotation and soft-tissue deformation, in the majority of cases. Anatomic changes coupled with the uncertainties of particle penetration in tissue restrict possibilities for margin reduction in proton therapy of prostate cancer.

Download full-text

Full-text

Available from: Hsiao-Ming Lu, Jun 30, 2015
0 Followers
 · 
126 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to perform dose recalculation on the anatomy of the day is important in the context of adaptive proton therapy. The objective of this study was to investigate the use of deformable image registration (DIR) and cone beam CT (CBCT) imaging to generate the daily stopping power distribution of the patient. We investigated the deformation of the planning CT scan (pCT) onto daily CBCT images to generate a virtual CT (vCT) using a deformable phantom designed for the head and neck (H & N) region.The phantom was imaged at a planning CT scanner in planning configuration, yielding a pCT and in deformed, treatment day configuration, yielding a reference CT (refCT). The treatment day configuration was additionally scanned at a CBCT scanner. A Morphons DIR algorithm was used to generate a vCT. The accuracy of the vCT was evaluated by comparison to the refCT in terms of corresponding features as identified by an adaptive scale invariant feature transform (aSIFT) algorithm. Additionally, the vCT CT numbers were compared to those of the refCT using both profiles and regions of interest and the volumes and overlap (DICE coefficients) of various phantom structures were compared. The water equivalent thickness (WET) of the vCT, refCT and pCT were also compared to evaluate proton range differences. Proton dose distributions from the same initial fluence were calculated on the refCT, vCT and pCT and compared in terms of proton range. The method was tested on a clinical dataset using a replanning CT scan acquired close in time to a CBCT scan as reference using the WET evaluation.Results from the aSIFT investigation suggest a deformation accuracy of 2-3 mm. The use of the Morphon algorithm did not distort CT number intensity in uniform regions and WET differences between vCT and refCT were of the order of 2% of the proton range. This result was confirmed by proton dose calculations. The patient results were consistent with phantom observations. In conclusion, our phantom study suggests the vCT approach is adequate for proton dose recalculation on the basis of CBCT imaging.
    Physics in Medicine and Biology 12/2014; 60(2):595-613. DOI:10.1088/0031-9155/60/2/595 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proton therapy is a promising, but costly, treatment for prostate cancer. Theoretical physical advantages exist; yet to date, it has been shown only to be comparably safe and effective when compared with the alternatives and not necessarily superior. If clinically meaningful benefits do exist for patients, more rigorous study will be needed to detect them and society will require this to justify the investment of time and money. New technical advances in proton beam delivery coupled with shortened overall treatment times and declining device costs have the potential to make this a more cost-effective therapy in the years ahead.British Journal of Cancer advance online publication, 12 March 2013; doi:10.1038/bjc.2013.100 www.bjcancer.com.
    British Journal of Cancer 03/2013; 108(6). DOI:10.1038/bjc.2013.100 · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Secondary neutron induced single event burnouts (SEB) in power MOSFETs to be installed in an X-ray generator located in a proton therapy treatment vault are characterized. This is done using both accelerated and in situ testing. Experimental techniques and schematics are presented that allow non-destructive testing of multiple MOSFETs in parallel for in situ real time measurements.
    IEEE Transactions on Nuclear Science 12/2012; 59(6):3154-3159. DOI:10.1109/TNS.2012.2221741 · 1.46 Impact Factor