Article

Dax1 up-regulates Oct4 expression in mouse embryonic stem cells via LRH-1 and SRA.

Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.
Molecular Endocrinology (Impact Factor: 4.2). 10/2010; 24(12):2281-91. DOI: 10.1210/me.2010-0133
Source: PubMed

ABSTRACT Dax1 (Nr0b1) is an atypical orphan nuclear receptor that has recently been shown to play a role in mouse embryonic stem (mES) cell pluripotency. Here we describe a mechanism by which Dax1 maintains pluripotency. In steroidogenic cells, Dax1 protein interacts with the NR5A nuclear receptor steroidogenic factor 1 (Nr5a1) to inhibit transcription of target genes. In mES cells, liver receptor homolog 1 (LRH-1, Nr5a2), the other NR5A family member, is expressed, and LRH-1 has been shown to interact with Dax1. We demonstrate by coimmunoprecipitation that Dax1 is, indeed, able to form a complex with LRH-1 in mES cells. Because Dax1 was historically characterized as an inhibitor of steroidogenic factor 1-mediated transcriptional activation, we hypothesized that Dax1 would inhibit LRH-1 action in mES cells. Therefore, we examined the effect of Dax1 on the LRH-1-mediated activation of the critical ES cell factor Oct4 (Pou5f1). Chromatin immunoprecipitation localized Dax1 to the Oct4 promoter at the LRH-1 binding site, and luciferase assays together with Dax1 overexpression and knockdown experiments revealed that, rather than repress, Dax1 accentuated LRH-1-mediated activation of the Oct4 gene. Similar to our previously published studies that defined the RNA coactivator steroid receptor RNA activator as the critical mediator of Dax1 coactivation function, Dax1 augmentation of LRH-1-mediated Oct4 activation is dependent upon steroid receptor RNA activator. Finally, utilizing published chromatin immunoprecipitation data of whole-genome binding sites of LRH-1 and Dax1, we show that LRH-1 and Dax1 commonly colocalize at 288 genes (43% of LRH-1 target genes), many of which are involved in mES cell pluripotency. Thus, our results indicate that Dax1 plays an important role in the maintenance of pluripotency in mES cells through interaction with LRH-1 and transcriptional activation of Oct4 and other genes.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adrenal gland consists of two distinct parts, the cortex and the medulla. Molecular mechanisms controlling differentiation and growth of the adrenal gland have been studied in detail using mouse models. Knowledge also came from investigations of genetic disorders altering adrenal development and/or function. During embryonic development, the adrenal cortex acquires a structural and functional zonation in which the adrenal cortex is divided into three different steroidogenic zones. Significant progress has been made in understanding adrenal zonation. Recent lineage tracing experiments have accumulated evidence for a centripetal differentiation of adrenocortical cells from the subcapsular area to the inner part of the adrenal cortex. Understanding of the mechanism of adrenocortical cancer (ACC) development was stimulated by knowledge of adrenal gland development. ACC is a rare cancer with a very poor overall prognosis. Abnormal activation of the Wnt/β-catenin as well as the IGF2 signaling plays an important role in ACC development. Studies examining rare genetic syndromes responsible for familial ACT have played an important role in identifying genetic alterations in these tumors (like TP53 or CTNNB1 mutations as well as IGF2 overexpression). Recently, genomic analyses of ACT have shown gene expression profiles associated with malignancy as well as chromosomal and methylation alterations in ACT and exome sequencing allowed to describe the mutational landscape of these tumors. This progress leads to a new classification of these tumors, opening new perspectives for the diagnosis and prognostication of ACT. This review summarizes current knowledge of adrenocortical development, growth, and tumorigenesis. © 2015 American Physiological Society. Compr Physiol 5: 293-326, 2015.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cells are endowed with the potential for self-renewal and multipotency. Pluripotent embryonic stem cells have an early role in the formation of the three germ layers (ectoderm, mesoderm and endoderm), whereas adult tissue stem cells and progenitor cells are critical mediators of organ homeostasis. The adrenal cortex is an exceptionally dynamic endocrine organ that is homeostatically maintained by paracrine and endocrine signals throughout postnatal life. In the past decade, much has been learned about the stem and progenitor cells of the adrenal cortex and the multiple roles that these cell populations have in normal development and homeostasis of the adrenal gland and in adrenal diseases. In this Review, we discuss the evidence for the presence of adrenocortical stem cells, as well as the various signalling molecules and transcriptional networks that are critical for the embryological establishment and postnatal maintenance of this vital population of cells. The implications of these pathways and cells in the pathophysiology of disease are also addressed.
    Nature Reviews Endocrinology 10/2014; 11(1). DOI:10.1038/nrendo.2014.166 · 11.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear orphan receptors for which endogenous ligands have not been identified include NR0B1 (DAX-1), NR0B2 (SHP), NR1D1/2 (Rev-Erbα/β), NR2C1 (TR2), NR2C2 (TR4), NR2E1 (TLX), NR2E3 (PNR), NR2F1 (COUP-TFI), NR2F2 (COUP-TFII), NR2F6 (EAR2), NR4A1 (Nur77), NR4A2 (Nurr1), NR4A3 (Nor1) and NR6A1 (GCNF). These receptors play essential roles in development, cellular homeostasis, and disease including cancer where over- or underexpression of some receptors has prognostic significance for patient survival. Results of receptor knockdown or overexpression in vivo and in cancer cell lines demonstrate that orphan receptors exhibit tumor specific pro-oncogenic or tumor suppressor-like activity. For example, COUP-TFII expression is both a positive (ovarian) and negative (prostate and breast) prognostic factor for cancer patients; in contrast, the prognostic activity of DAX-1 for the same tumors is the inverse of COUP-TFII. Functional studies show that Nur77 is tumor suppressor-like in acute leukemia, whereas silencing Nur77 in pancreatic, colon, lung, lymphoma, melanoma, cervical, ovarian, gastric and some breast cancer cell lines induces one or more of several responses including growth inhibition and decreased survival, migration and invasion. Although endogenous ligands for the orphan receptors have not been identified, there is increasing evidence that different structural classes of compounds activate, inactivate and directly bind several orphan receptors. Thus, the screening and development of selective orphan receptor modulators will have important clinical applications as novel mechanism-based agents for treating cancer patients overexpressing one or more orphan receptors and also for combined drug therapies.
    Molecular Endocrinology 12/2013; 28(2). DOI:10.1210/me.2013-1291 · 4.20 Impact Factor