Pain tests provoke modality-specific cardiovascular responses in awake, unrestrained rats

Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
Pain (Impact Factor: 5.21). 10/2010; 152(2):274-84. DOI: 10.1016/j.pain.2010.09.010
Source: PubMed


Nociception modulates heart rate (HR) and mean arterial pressure (MAP), suggesting their use of HR and MAP as indicators of pain in animals. We explored this with telemetric recording in unrestrained control and neuropathic (spinal nerve ligation) rats. Plantar stimulation was performed emulating techniques commonly used to measure pain, specifically brush stroke, von Frey fiber application, noxious pin stimulation, acetone for cooling, and radiant heating, while recording MAP, HR, and specific evoked somatomotor behaviors (none; simple withdrawal; or sustained lifting, shaking, and grooming representing hyperalgesia). Pin produced elevations in both HR and MAP, and greater responses accompanied hyperalgesia behavior compared to simple withdrawal. Von Frey stimulation depressed MAP, and increased HR only when stimulation produced hyperalgesia behavior, suggesting that minimal nociception occurs without this behavior. Brush increased MAP even when no movement was evoked. Cold elevated both HR and MAP whether or not there was withdrawal, but MAP increased more when withdrawal was triggered. Heating, consistently depressed HR and MAP, independent of behavior. Other than a greater HR response to pin in animals made hyperalgesic by injury, cardiovascular events evoked by stimulation did not differ between control and neuropathic animals. We conclude that (a) thermoregulation rather than pain may dominate responses to heat and cooling stimuli; (b) brush and cooling stimuli may be perceived and produce cardiovascular activation without nocifensive withdrawal; (c) sensations that produce hyperalgesia behavior are accompanied by greater cardiovascular activation than those producing simple withdrawal; and (d) von Frey stimulation lacks cardiovascular evidence of nociception except when hyperalgesia behavior is evoked.

Download full-text


Available from: Sergey S Tarima, Oct 10, 2015
15 Reads
  • Source
    • "Thus, we observed an increase in MAP and HR of formalin trial groups not previously treated with sertraline. It has been well established that nociception modulates HR and MAP, validating the use of these parameters as indicators of pain in animal models (34,35). Sertraline also reduced RF after the nociceptive stimulus. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The objective of the present study was to determine the antihyperalgesic effect of sertraline, measured indirectly by the changes of sciatic afferent nerve activity, and its effects on cardiorespiratory parameters, using the model of formalin-induced inflammatory nociception in anesthetized rats. Serum serotonin (5-HT) levels were measured in order to test their correlation with the analgesic effect. Male Wistar rats (250-300 g) were divided into 4 groups (N = 8/per group): sertraline-treated group (Sert + Saline (Sal) and Sert + Formalin (Form); 3 mg·kg-1·day-1, ip, for 7 days) and saline-treated group (Sal + Sal and Sal + Form). The rats were injected with 5% (50 µL) formalin or saline into the right hind paw. Sciatic nerve activity was recorded using a silver electrode connected to a NeuroLog apparatus, and cardiopulmonary parameters (mean arterial pressure, heart rate and respiratory frequency), assessed after arterial cannulation and tracheotomy, were monitored using a Data Acquisition System. Blood samples were collected from the animals and serum 5-HT levels were determined by ELISA. Formalin injection induced the following changes: sciatic afferent nerve activity (+50.8 ± 14.7%), mean arterial pressure (+1.4 ± 3 mmHg), heart rate (+13 ± 6.8 bpm), respiratory frequency (+4.6 ± 5 cpm) and serum 5-HT increased to 1162 ± 124.6 ng/mL. Treatment with sertraline significantly reduced all these parameters (respectively: +19.8 ± 6.9%, -3.3 ± 2 mmHg, -13.1 ± 10.8 bpm, -9.8 ± 5.7 cpm) and serum 5-HT level dropped to 634 ± 69 ng/mL (P < 0.05). These results suggest that sertraline plays an analgesic role in formalin-induced nociception probably through a serotonergic mechanism.
    Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 11/2011; 45(1):43-8. DOI:10.1590/S0100-879X2011007500154 · 1.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fibromyalgia syndrome (FMS) is characterized by pain referred to deep tissues. Diagnosis and treatment of FMS are complicated by a variable coexistence with regional pain, fatigue, sleep disruption, difficulty with mentation, and depression. The widespread, deep pain of FMS can be a consequence of chronic psychological stress with autonomic dysregulation. Stress acts centrally to facilitate pain and acts peripherally, via sympathetic vasoconstriction, to establish painful muscular ischemia. FMS pain, with or without a coexistent regional pain condition, is stressful, setting up a vicious circle of reciprocal interaction. Also, stress interacts reciprocally with systems of control over depression, mentation, and sleep, establishing FMS as a multiple-system disorder. Thus, stress and the ischemic pain it generates are fundamental to the multiple disorders of FMS, and a therapeutic procedure that attenuates stress and peripheral vasoconstriction should be highly beneficial for FMS. Physical exercise has been shown to counteract peripheral vasoconstriction and to attenuate stress, depression, and fatigue and improve mentation and sleep quality. Thus, exercise can interrupt the reciprocal interactions between psychological stress and each of the multiple-system disorders of FMS. The large literature supporting these conclusions indicates that exercise should be considered strongly as a first-line approach to FMS therapy.
    Pain Research and Treatment 01/2012; 2012(2090-1542):951354. DOI:10.1155/2012/951354
  • [Show abstract] [Hide abstract]
    ABSTRACT: The T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the central nervous system. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation. Following frequency was slower for a train of 20 APs than for 2, indicating that a cumulative process leads to propagation failure. Propagation failure was accompanied by diminished somatic membrane input resistance, and was enhanced when Ca2+-sensitive K+ currents were augmented or when Ca2+-sensitive Cl- currents were blocked. After peripheral nerve injury, following frequencies were increased in axotomized C-type neurons and decreased in axotomized non-inflected A-type neurons. These findings reveal that the T-junction in sensory neurons is a regulator of afferent impulse traffic. Diminished filtering of AP trains at the T-junction of C-type neurons with axotomized peripheral processes could enhance the transmission of activity that is ectopically triggered in a neuroma or the neuronal soma, possibly contributing to pain generation.
    The Journal of Physiology 11/2012; 591(4). DOI:10.1113/jphysiol.2012.242750 · 5.04 Impact Factor
Show more