Article

Microchimerism in salivary glands after blood- and marrow-derived stem cell transplantation.

Faculty of Dentistry, McGill University, Montreal, Canada.
Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation (Impact Factor: 3.15). 10/2010; 17(3):429-33. DOI: 10.1016/j.bbmt.2010.09.021
Source: PubMed

ABSTRACT Blood- and marrow-derived stem cells (BMDSCs) provide disease-ameliorating effects for cardiovascular and autoimmune diseases. Microchimerism from donor BMDSCs has been reported in several recipient tissues. We hypothesized that this finding suggests a potential use of BMDSCs in the treatment of salivary dysfunctions. We investigated the presence of Y chromosome-positive cells in salivary gland biopsies of 5 females who had received a marrow or blood stem cell transplant from male donors. One to 16 years after transplantation, all recipients exhibited scattered Y chromosome-positive cells in the acini, ducts, and stroma of their salivary glands (mean of 1.01%). Potentially, these cells can be markers of transplantation tolerance, contribute to neoplastic epithelial tissues, or engraft at sites of injury. In addition, transplantation of BMDSCs could be used for treatment of Sjögren's syndrome and salivary glands damaged by therapeutic irradiation for cancers of the head and neck.

0 Bookmarks
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
    PLoS ONE 01/2014; 9(1):e87158. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia.
    The Journal of clinical investigation. 07/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xerostomia is a severe side effect of radiation therapy in head and neck cancer patients. To date, no satisfactory treatment option has been established. Because mesenchymal stem cells (MSCs) have been identified as a potential treatment modality, we aimed to evaluate stem cell distribution following intravenous and intraglandular injections using a surgical model of salivary gland damage and to analyse the effects of MSC injections on the recruitment of immune cells. The submandibular gland ducts of rats were surgically ligated. Syngeneic adult MSCs were isolated, immortalised by simian virus 40 (SV40) large T antigen and characterized by flow cytometry. MSCs were injected intravenously and intraglandularly. After 1, 3 and 7 days, the organs of interest were analysed for stem cell recruitment. Inflammation was analysed by immunohistochemical staining. We were able to demonstrate that, after intravenous injection, MSCs were recruited to normal and damaged submandibular glands on days 1, 3 and 7. Unexpectedly, stem cells were recruited to ligated and non-ligated glands in a comparable manner. After intraglandular injection of MSCs into ligated glands, the presence of MSCs, leucocytes and macrophages was enhanced, compared to intravenous injection of stem cells. Our data suggest that injected MSCs were retained within the inflamed glands, could become activated and subsequently recruited leucocytes to the sites of tissue damage.International Journal of Oral Science advance online publication, 9 May 2014; doi:10.1038/ijos.2014.23.
    International Journal of Oral Science 05/2014; · 2.72 Impact Factor

Full-text (2 Sources)

Download
38 Downloads
Available from
May 29, 2014