Article

Physiological determinants of the candidate physical ability test in firefighters.

Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland, USA.
The Journal of Strength and Conditioning Research (Impact Factor: 1.8). 10/2010; 24(11):3112-22. DOI: 10.1519/JSC.0b013e3181f0a8d5
Source: PubMed

ABSTRACT The purpose of this study was to examine the relative importance of physiological characteristics during firefighting performance, as assessed by the Candidate Physical Ability Test (CPAT). Subjects included career and volunteer firefighters aged 18-39 (N = 33). Upper- and lower-body strength, muscle endurance, lower body muscle power, body composition analysis, aerobic capacity, anaerobic fitness, and the heart rate (HR) and blood pressure response to stair climbing were assessed to determine the physiological characteristics of the subjects. To quantify firefighting performance, the CPAT was administered by members of the fire service. Absolute and relative mean power during the Wingate anaerobic cycling test (WAnT), relative peak power during the WAnT, and absolute maximal oxygen uptake (VO2max) were significantly higher in those who passed the CPAT (N = 18), compared to those who failed (N = 15; p < 0.01). Mean power during the WAnT, fatigue index during WAnT, absolute VO2max, upper body strength, grip strength, and the HR response to stair climbing were significantly related to CPAT performance time (p < 0.01). Absolute VO2max and anaerobic fatigue resistance during WAnT best predicted CPAT performance (Adj. R2 = 0.817; p < 0.001). Performance on the ceiling breach and pull was the only CPAT task that was not significantly related to the physiological characteristics assessed. Measures of anaerobic and cardiovascular fitness best predict overall CPAT performance, and individual task performance. Remedial programs aimed at improving firefighting performance should target anaerobic and aerobic fitness qualities.

0 Bookmarks
 · 
253 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Storer, TW, Dolezal, BA, Abrazado, ML, Smith, DL, Batalin, MA, Tseng, C-H, and Cooper, CB; The PHASER Study Group. Firefighter health and fitness assessment: A call to action. J Strength Cond Res 28(3): 661-671, 2014-Sudden cardiac deaths experienced by firefighters in the line of duty account for the largest proportion of deaths annually. Several fire service standards for fitness and wellness have been recommended but currently only 30% of U.S. fire departments are implementing programs for this purpose. The Department of Homeland Security Science and Technology Directorate has initiated the Physiological Health Assessment System for Emergency Responders (PHASER) program aiming to reduce these line-of-duty deaths through an integration of medical science and sensor technologies. Confirming previous reports, PHASER comprehensive risk assessment has identified lack of physical fitness with propensity for overexertion as a major modifiable risk factor. We sought to determine if current levels of fitness and cardiovascular disease (CVD) risk factors in a contemporary cohort of firefighters were better than those reported over the past 30 years. Fifty-one firefighters from a Southern California department were characterized for physical fitness and CVD risk factors using standard measures. Overall, physical fitness and risk factors were not different from previous reports of firefighter fitness and most subjects did not achieve recommended fitness standards. Considering the lack of widespread implementation of wellness/fitness programs in the U.S. fire service together with our findings that low physical fitness and the presence of CVD risk factors persist, we issue a call to action among health and fitness professionals to assist the fire service in implementing programs for firefighters that improve fitness and reduce CVD risk factors. Fitness professionals should be empowered to work with fire departments lending their expertise to guide programs that achieve these objectives, which may then lead to reduced incidence of sudden cardiac death or stroke.
    The Journal of Strength and Conditioning Research 03/2014; 28(3):661-71. · 1.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.
    PLoS ONE 03/2014; 9(3):e91215. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The forward-sprint is considered to be, and is regularly performed as, a unique measure of "on-ground" linear-speed performance. Thus far, no investigation has simultaneously studied different forms of linear-speed or investigated whether different forms of linear-speed should be observed as unique performance quality. The purpose of this study was to determine (I) the achievements (i.e. execution time), and (II) the reliability and inter-relationships between various linear-speed performances. The participants were 42 male physical education students with substantial sport-specific backgrounds. We applied a total of six tests: three quadrupedal (supine backward, supine forward, and pronate backward locomotion) and three bipedal-performances (forward sprinting, backward sprinting, lateral shuffling). All of the tests showed appropriate reliability parameters (Cronbach Alpha ranged from 0.91 to 0.97; Inter-Item-R 0.78-0.92; Coefficient-of-Variation 1.3-9.1). The tests used in this study shared between 9% and 50% of the common variance. Our results suggest that different activities require activity-specific tests of linear-speed. This is particularly significant in those sports and activities in which quadrupedal locomotion patterns are highly important (wrestling, physically trained military services, law enforcement, fire and rescue, protective services).
    Journal of Human Kinetics 01/2013; 38:53-61. · 0.70 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 17, 2014