Article

Dimerization of a viral SET protein endows its function.

Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2010; 107(43):18433-8. DOI: 10.1073/pnas.1009911107
Source: PubMed

ABSTRACT Histone modifications are regarded as the most indispensible phenomena in epigenetics. Of these modifications, lysine methylation is of the greatest complexity and importance as site- and state-specific lysine methylation exerts a plethora of effects on chromatin structure and gene transcription. Notably, paramecium bursaria chlorella viruses encode a conserved SET domain methyltransferase, termed vSET, that functions to suppress host transcription by methylating histone H3 at lysine 27 (H3K27), a mark for eukaryotic gene silencing. Unlike mammalian lysine methyltransferases (KMTs), vSET functions only as a dimer, but the underlying mechanism has remained elusive. In this study, we demonstrate that dimeric vSET operates with negative cooperativity between the two active sites and engages in H3K27 methylation one site at a time. New atomic structures of vSET in the free form and a ternary complex with S-adenosyl homocysteine and a histone H3 peptide and biochemical analyses reveal the molecular origin for the negative cooperativity and explain the substrate specificity of H3K27 methyltransferases. Our study suggests a "walking" mechanism, by which vSET acts all by itself to globally methylate host H3K27, which is accomplished by the mammalian EZH2 KMT only in the context of the Polycomb repressive complex.

0 Followers
 · 
103 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Natural interconversions between distinct somatic cell types have been reported in species as diverse as jellyfish and mice. The efficiency and reproducibility of some reprogramming events represent unexploited avenues in which to probe mechanisms that ensure robust cell conversion. We report that a conserved H3K27me3/me2 demethylase, JMJD-3.1, and the H3K4 methyltransferase Set1 complex cooperate to ensure invariant transdifferentiation (Td) of postmitotic Caenorhabditis elegans hindgut cells into motor neurons. At single-cell resolution, robust conversion requires stepwise histone-modifying activities, functionally partitioned into discrete phases of Td through nuclear degradation of JMJD-3.1 and phase-specific interactions with transcription factors that have conserved roles in cell plasticity and terminal fate selection. Our results draw parallels between epigenetic mechanisms underlying robust Td in nature and efficient cell reprogramming in vitro.
    Science 08/2014; 345(6198):826-9. DOI:10.1126/science.1255885 · 31.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Targeted gene silencing is an important approach in both drug development and basic research. However, the selection of a potent suppressor has become a significant hurdle to implementing maximal gene inhibition for this approach. We attempted to construct a ‘super suppressor’ by combining the activities of two suppressors that function through distinct epigenetic mechanisms. Results Gene targeting vectors were constructed by fusing a GAL4 DNA-binding domain with a epigenetic suppressor, including CpG DNA methylase Sss1, histone H3 lysine 27 methylase vSET domain, and Kruppel-associated suppression box (KRAB). We found that both Sss1 and KRAB suppressors significantly inhibited the expression of luciferase and copGFP reporter genes. However, the histone H3 lysine 27 methylase vSET did not show significant suppression in this system. Constructs containing both Sss1 and KRAB showed better inhibition than either one alone. In addition, we show that KRAB suppressed gene expression by altering the histone code, but not DNA methylation in the gene promoter. Sss1, on the other hand, not only induced de novo DNA methylation and recruited Heterochromatin Protein 1 (HP1a), but also increased H3K27 and H3K9 methylation in the promoter. Conclusions Epigenetic studies can provide useful data for the selection of suppressors in constructing therapeutic vectors for targeted gene silencing.
    Epigenetics & Chromatin 08/2014; 7:20. DOI:10.1186/1756-8935-7-20 · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lysine methylation has emerged as a prominent covalent modification in histones and non-histone proteins. This modification has been implicated in numerous genomic processes, including heterochromatinization, cell cycle progression, DNA damage response, DNA replication, genome stability, and epigenetic gene regulation that underpins developmental programs defining cell identity and fate. The site and degree of lysine methylation is dynamically modulated through the enzymatic activities of protein lysine methyltransferases (KMTs) and protein lysine demethylases (KDMs). These enzymes display distinct substrate specificities that in part define their biological functions. This review explores recent progress in elucidating the molecular basis of these specificities, highlighting structural and functional studies of the methyltransferases SUV4-20H1 (KMT5B), SUV4-20H2 (KMT5C), and ATXR5, and the demethylases UTX (KDM6A), JMJD3 (KDM6B), and JMJD2D (KDM4D). We conclude by examining these findings in the context of related KMTs and KDMs and by exploring unresolved questions regarding the specificities and functions of these enzymes. This article is part of a Special Issue entitled: Methylation Multifaceted Modification - looking at transcription and beyond, edited by Dr. Johnathan Whetstine.
    Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 06/2014; 1839(12). DOI:10.1016/j.bbagrm.2014.06.008 · 5.44 Impact Factor

Full-text (2 Sources)

Download
29 Downloads
Available from
May 26, 2014