Article

Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins

Molecular Immunology Group, Cancer Sciences Division, University of Southampton, School of Medicine, Southampton SO16 6YD, United Kingdom.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 10/2010; 107(43):18587-92. DOI: 10.1073/pnas.1009388107
Source: PubMed

ABSTRACT Surface Ig (sIg) of follicular lymphoma (FL) is vital for tumor cell survival. We found previously that the Ig in FL is unusual, because the variable region genes carry sequence motifs for N-glycan addition. These are introduced by somatic mutation and are tumor specific. Unexpectedly, added glycans terminate at high mannose, suggesting a potentially important interaction of FL cells with mannose-binding lectins of the innate immune system. We have now identified mannosylated IgM at the surface of primary lymphoma cells. Recombinant lectin domains of the mannose receptor (MR) or DC-SIGN bind mannosylated Igs in vitro and bind to FL cells, signaling sIgM-associated increases in intracellular Ca(2+). Lectins also bind to normal B cells but fail to signal. In contrast, anti-Ig signaled similarly in both FL and normal B cells. Mannosylation patterns were mimicked by FL Ig-derived single-chain Fvs (scFv), providing probes for potential receptors. Mannosylated scFv bound specifically to the lectin domains of the MR and DC-SIGN and blocked signaling. Mannosylated scFv also bound to DC-SIGN on the surface of dendritic cells. This unique lymphoma-specific interaction of sIg with lectins of innate immunity reveals a potential route for microenvironmental support of tumor cells, mediated via the key B-cell receptor.

Download full-text

Full-text

Available from: Mohamed Emara, Jul 08, 2015
0 Followers
 · 
227 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Follicular lymphoma (FL) pathogenesis is a complex and fascinating multi-hit process, escalating along successive derailments of the distinctive molecular and cellular mechanisms paving B-cell differentiation and activation. This progressive subversion of B-cell receptor diversification mechanisms and B-cell homeostasis likely occurs during a protracted preclinical phase of asymptomatic growth, in which premalignant clones already disseminate and establish "niches" in secondary lymphoid organs. Following FL diagnosis, a parallel indolent behavior is observed in most patients, slowly progressing over a period of many years, to eventually generate a highly refractory (and in some case transform into an aggressive subtype of) lymphoma. Novel insights in human germinal center B-cell biology recently allowed a more comprehensive understanding of the various illegitimate events sequentially involved in the premalignant progression phases. In this review, we will discuss how these new data have modified our perception of early FL pathogenesis, the new questions and challenges it opened up, and how this knowledge could impact on innovative programs of early detection, follow-up, and patient management.
    Advances in Immunology 01/2011; 111:1-46. DOI:10.1016/B978-0-12-385991-4.00001-5 · 5.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peripheral T-cell lymphoma (PTCL) is a biologically diverse lymphoid malignancy. The clinical aggressiveness associated with hemophagocytic syndrome (HS) is a characteristic of PTCL, being more distinctive in CD8(+) PTCL. However, the underlying mechanism of PTCL-associated HS has not yet been fully investigated. We newly established a novel IL-2-dependent CD8(+) PTCL lymphoma cell line (T8ML-1) from a patient with CD8(+) PTCL who suffered recurrent HS accompanying disease flare-up. Focusing on the lymphoma cell T-cell receptor (TCR), we examined the lymphoma cell functions responsible for such clinical manifestations. First, T8ML-1.1 in which endogenous TCR-α/β chains were silenced by siRNAs, and T8ML-1.2 in which endogenous TCR-α/β chains were replaced with HLA-A*24:02-restricted and WT1(235-243)-specific TCR-α/β, were established. T8ML-1 exerted phytohemagglutinin (PHA)-dependent cytotoxicity via granular exocytosis. Additionally, soluble factors produced by PHA-stimulated T8ML-1, which included INF-γ and TNF-α, but not by simple-cultured T8ML-1, caused human monocytes to exhibit erythrophagocytosis and thrombophagocytosis in vitro. PHA binding induced phosphorylation of CD3ζ chain. Furthermore, both cytotoxicity and hemophagocytosis were completely inhibited by T8ML-1.1, but eventually restored by T8ML-1.2. These data suggest that exogenous activation of TCR signaling in PTCL cells might play an important role in the formation of PTCL-associated HS.
    International journal of hematology 02/2011; 93(2):176-85. DOI:10.1007/s12185-010-0758-7 · 1.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: INTRODUCTION: The B-cell receptor (BCR) delivers antigen-dependent and -independent signals that have been implicated in the pathogenesis of several common B-cell malignancies. Agents that can efficiently block BCR signaling have recently been developed and are currently being evaluated as novel targeted therapies. Among these, agents that inhibit the Syk kinase appear particularly promising in preclinical and early clinical studies. AREAS COVERED: The manuscript provides an overview of recent findings that implicate Syk and the BCR signaling pathway in the pathogenesis of several common lymphoid malignancies. It outlines preclinical and early clinical experiences with the Syk inhibitor fostamatinib disodium (R788) and discusses various options for further clinical development of this compound. EXPERT OPINION: Inhibitors of Syk or other components of the BCR signaling pathway are emerging as an exciting novel class of agents for the treatment of common B-cell malignancies. Future efforts should focus on defining the disease entities that are most likely to benefit from these agents, although considerable evidence is already available to pursue such studies in patients with chronic lymphocytic leukemia. Combinations with chemo-immunotherapy, treatment of early-stage disease and consolidation therapy should all be explored and could lead to the development of novel therapeutic approaches with improved efficacy, tolerability and toxicity profiles.
    Expert Opinion on Investigational Drugs 03/2011; 20(5):623-36. DOI:10.1517/13543784.2011.570329 · 5.43 Impact Factor