Article

CPEB4 is a cell survival protein retained in the nucleus upon ischemia or endoplasmic reticulum calcium depletion.

Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605-2377, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 10/2010; 30(24):5658-71. DOI: 10.1128/MCB.00716-10
Source: PubMed

ABSTRACT The RNA binding protein CPEB (cytoplasmic polyadenylation element binding) regulates cytoplasmic polyadenylation and translation in germ cells and the brain. In neurons, CPEB is detected at postsynaptic sites, as well as in the cell body. The related CPEB3 protein also regulates translation in neurons, albeit probably not through polyadenylation; it, as well as CPEB4, is present in dendrites and the cell body. Here, we show that treatment of neurons with ionotropic glutamate receptor agonists causes CPEB4 to accumulate in the nucleus. All CPEB proteins are nucleus-cytoplasm shuttling proteins that are retained in the nucleus in response to calcium-mediated signaling and alpha-calcium/calmodulin-dependent kinase protein II (CaMKII) activity. CPEB2, -3, and -4 have conserved nuclear export signals that are not present in CPEB. CPEB4 is necessary for cell survival and becomes nuclear in response to focal ischemia in vivo and when cultured neurons are deprived of oxygen and glucose. Further analysis indicates that nuclear accumulation of CPEB4 is controlled by the depletion of calcium from the ER, specifically, through the inositol-1,4,5-triphosphate (IP3) receptor, indicating a communication between these organelles in redistributing proteins between subcellular compartments.

0 Followers
 · 
390 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulated RNA translation is critical to provide proteins needed to maintain persistent modification of synaptic strength, which underlies the molecular basis of long-term memory (LTM). Cytoplasmic polyadenylation element-binding proteins (CPEBs) are sequence-specific RNA-binding proteins and regulate translation in various tissues. All four CPEBs in vertebrates are expressed in the brain, including the hippocampal neurons, suggesting their potential roles in translation-dependent plasticity and memory. Although CPEB1 and CPEB3 have been shown to control specific kinds of hippocampus-related LTM, the role of CPEB2 and CPEB4 in learning and memory remains elusive. Thus, we generated CPEB4 knockout (KO) mice and analyzed them using several behavioral tests. No difference was found in the anxiety level, motor coordination, hippocampus-dependent learning and memory between the KO mice and their wild-type (WT) littermates. Electrophysiological recordings of multiple forms of synaptic plasticity in the Schaffer collateral pathway-CA1 neurons also showed normal responses in the KO hippocampal slices. Morphological analyses revealed that the CPEB4-lacking pyramidal neurons possessed slightly elongated dendritic spines. Unlike its related family members, CPEB1 and CPEB3, CPEB4 seems to be dispensable for hippocampus-dependent plasticity, learning and memory.
    PLoS ONE 12/2013; 8(12):e84978. DOI:10.1371/journal.pone.0084978 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stress granules (SGs) are compartmentalized messenger ribonucleoprotein particles (mRNPs) where translationally repressed mRNAs are stored when cells encounter environmental stress. Cytoplasmic polyadenylation element-binding protein (CPEB)4 is a sequence-specific RNA-binding protein and translational regulator. In keeping with the results obtained from the study of other RNA-binding proteins, we found CPEB4 localized in SGs in various arsenite-treated cells. In this study, we identified that Vinexin, a CPEB4-interacting protein, is a novel component of SGs. Vinexin is a SH3-domain-containing adaptor protein and affects cell migration through its association with Vinculin to localize at focal adhesions (FAs). Unexpectedly, Vinexin is translocated from FAs to SGs under arsenite-induced stress. The recruitment of Vinexin to SGs depends on its interaction with CPEB4 and influences SG formation and cell survival. Arsenite-activated c-Jun N-terminal kinase (JNK) signaling enhances the association between CPEB4 and Vinexin, which consequently facilitates SG localization of Vinexin. Taken together, this study uncovers a novel interaction between a translational regulator and an adaptor protein to influence SG assembly and cell survival.
    PLoS ONE 09/2014; 9(9):e107961. DOI:10.1371/journal.pone.0107961 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3' untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein-protein and protein-RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3' UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
    Genes & Development 07/2014; 28(13):1498-514. DOI:10.1101/gad.241133.114 · 12.64 Impact Factor

Full-text (2 Sources)

Download
48 Downloads
Available from
May 23, 2014