Article

The Bioaccumulation of Some Heavy Metals in the Fruiting Body of Wild Growing Mushrooms

Notulae Botanicae Horti Agrobotanici Cluj-Napoca 01/2010;
Source: DOAJ

ABSTRACT Due to their effective mechanism of accumulation of heavy metals from soil, the macrofungi show high concentrations of metals in their fruiting body. According with this ability, the mushrooms can be used to evaluate and control the level of environmental pollution, but also represent danger for human ingestion. We analyzed some macrofungi species from a wooded area to establish the heavy metal concentrations and ability of bioaccumulation and translocation for Zn, Cu and Sn in fruiting body. The metallic content was established by the Inductively Coupled Plasma-Atomic Emission Spectrometry method (ICP-AES). The minimal detection limits of method is 0.4 mg/kg for Zn and Cu and 0.6 mg/kg for Sn. Heavy metals concentrations in the fruiting body ranged between 6.98-20.10 mg/kg for Zn (the higher value was for Tapinella atrotomentosa); 16.13-144.94 mg/kg for Cu (the higher value was for Hypholoma fasciculare); and 24.36-150.85 mg/kg for Sn (the higher value was for Paxillus involutus). The bioaccumulation factor has important values (higher than 1) only for copper in all the analyzed species (between 1.30 and 8.86) and for tin in Paxillus involutus species (1.19). The translocation factor shows that zinc and tin were accumulated in higher concentrations in cap of mushrooms and the copper had higher concentrations in stipe.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The patterns of uptake and distribution of Co, Ni, Cu, Zn, Cd, and Pb in the soil-mycelium-sporocarps compartments in various transfer steps are presented. I attempted to find out whether there is a difference between the uptake of metals from soil to fungi (mycelium/soil ratio) and transport within fungal thalli (sporocarps/mycelium ratio). The concentration of Cu, Zn, and Cd increased in the order bulk soil < soil-root interface (or rhizosphere) < fungal mycelium < fungal sporocarps. The concentration of Co, Ni, and Pb decreased in the order bulk soil (or rhizosphere) < fungal mycelium < soil-root interface < fungal sporocarps. The uptake of Cu, Zn, and Cd during the entire transfer process in natural conditions between soil and sporocarps occurred against a concentration gradient. Mycorrhizal fungi (mycelium and sporocarps) only absorbed Co, Ni, and Pb but did not accumulate these elements in their thalli. Metal accumulation within fungal mycelium biomass in the top forest soil layer (0–5 cm) may account for about 5% of the total amount of Co, 4% Ni, 7% Cu, 8% Zn, 24% Cd, and 3% Pb.
    ISRN Ecology. 07/2012; 2012.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many previous studies revealed a high ability of mushrooms to accumulate heavy metals from environment. This paper concerns the capacity of some wild macromycetes belonging to Russula genus to accumulate heavy metals in natural condition of pH (between 6.5 and 6.8) and the pattern of metal translocation in the fruiting body. The studied Russula species are Russula virescens, Russula cyanoxantha, Russula foetens, and Russula nigrescens, which were harvested from forestry ecosystem from South Romania. The metal concentration in mushrooms and their substrate was established by EDXRF method. The concentrations of iron (Fe), zinc (Zn), and copper (Cu) in the fruiting body depends on species and vary between 58.83-340.34, 19.70-99.62, and 5.03-9.37 mg/kg for Fe, Zn, and Cu, respectively. The bioaccumulation factor has subunit values for the three studied trace metals, which show the low capacity of these species of mushrooms to accumulate metals if the concentrations in soil increase over the normal threshold for these elements. The high values of translocation factor demonstrate the mobility of Fe, Zn, and Cu in the studied mushrooms.
    Environmental Science and Pollution Research 01/2011; 18(6):890-6. · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remediation of soil contaminated with heavy metals has received considerable attention in recent years. In this study, the heavy metal uptake potential of the mushroom, Galerina vittiformis, was studied in soil artificially contaminated with Cu (II), Cd (II), Cr (VI), Pb (II) and Zn (II) at concentrations of 50 and 100mg/kg. G. vittiformis was found to be effective in removing the metals from soil within 30 days. The bioaccumulation factor (BAF) for both mycelia and fruiting bodies with respect to these heavy metals at 50mg/kg concentrations were found to be greater than one, indicating hyper accumulating nature by the mushroom. The metal removal rates by G. vittiformis was analyzed using different kinetic rate constants and found to follow the second order kinetic rate equation except for Cd (II), which followed the first order rate kinetics.
    Ecotoxicology and Environmental Safety 03/2014; · 2.20 Impact Factor

Full-text (2 Sources)

View
110 Downloads
Available from
Jun 2, 2014