Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm

Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China.
Applied Optics (Impact Factor: 1.69). 10/2010; 49(29):5654-64. DOI: 10.1364/AO.49.005654
Source: PubMed

ABSTRACT The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.


Available from: Jimin Liang, May 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article proposes a surface reconstruction method from multiview projectional data acquired by means of a rotationally mounted microlens array-based light detector (MLA-D). The technique is adapted for in vivo small animal imaging, specifically for imaging of nude mice, and does not require an additional imaging step (e.g., by means of a secondary structural modality) or additional hardware (e.g., laser-scanning approaches). Any potential point within the field of view (FOV) is evaluated by a proposed photo-consistency measure, utilizing sensor image light information as provided by elemental images (EIs). As the superposition of adjacent EIs yields depth information for any point within the FOV, the three-dimensional surface of the imaged object is estimated by a graph cuts-based method through global energy minimization. The proposed surface reconstruction is evaluated on simulated MLA-D data, incorporating a reconstructed mouse data volume as acquired by x-ray computed tomography. Compared with a previously presented back projection-based surface reconstruction method, the proposed technique yields a significantly lower error rate. Moreover, while the back projection-based method may not be able to resolve concave surfaces, this approach does. Our results further indicate that the proposed method achieves high accuracy at a low number of projections. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
    Optical Engineering 02/2014; 53(2). DOI:10.1117/1.OE.53.2.023104 · 0.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A study is presented that demonstrates that bioluminescence tomography can reconstruct accurate 3D images of internal light sources placed at a range of depths within a physical phantom and that it provides more reliable quantitative data than standard bioluminescence imaging. Specifically, it is shown that when imaging sources at depths ranging from 5 to 15mm, estimates of total source strength are stable to within ±11% using tomography whilst values deduced by traditional methods vary 10-fold. Additionally, the tomographic approach correctly localises sources to within 1.5mm error in all cases considered.
    European Conference on Biomedical Optics; 05/2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optical molecular imaging has been rapidly developed to noninvasively visualize in vivo physiological and pathological processes involved in normal and suffering organisms at the cellular and molecular levels, in which advanced optical imaging technology and modern molecular biology are being combined to provide a state‐of‐the‐art tool for preclinical biomedical research. Among optical molecular imaging modalities, bioluminescence tomography (BLT) has experienced considerable growth and attracted much attention in recent years for its excellent performance, unique advantages, and high cost‐effectiveness. This article focuses on the genesis and development of BLT, especially for its computational methodology, imaging system, and biomedical application. An overview of the advantages and challenges of the conventional planar bioluminescence imaging technique is first described in comparison with currently available molecular imaging modalities. The imaging algorithms for inverse source reconstruction are classified and summarized according to different a priori knowledge, followed by a simple depiction of the uniqueness theorems of BLT solution. Diverse imaging systems for obtaining three‐dimensional quantitative information of internal bioluminescent sources are then reviewed. The latest application examples of BLT in tumor study and drug discovery are introduced and compared with other mature imaging technologies. Finally, the paper is concluded and an attractive prospect for BLT is predicted.
    Laser & Photonics Review 01/2014; 8(1). DOI:10.1002/lpor.201280011 · 9.31 Impact Factor