Article

Generalized free-space diffuse photon transport model based on the influence analysis of a camera lens diaphragm.

Video and Image Processing System Laboratory, School of Electronic Engineering, Xidian University, Xi’an, Shaanxi 710071, China.
Applied Optics (Impact Factor: 1.69). 10/2010; 49(29):5654-64. DOI: 10.1364/AO.49.005654
Source: PubMed

ABSTRACT The camera lens diaphragm is an important component in a noncontact optical imaging system and has a crucial influence on the images registered on the CCD camera. However, this influence has not been taken into account in the existing free-space photon transport models. To model the photon transport process more accurately, a generalized free-space photon transport model is proposed. It combines Lambertian source theory with analysis of the influence of the camera lens diaphragm to simulate photon transport process in free space. In addition, the radiance theorem is also adopted to establish the energy relationship between the virtual detector and the CCD camera. The accuracy and feasibility of the proposed model is validated with a Monte-Carlo-based free-space photon transport model and physical phantom experiment. A comparison study with our previous hybrid radiosity-radiance theorem based model demonstrates the improvement performance and potential of the proposed model for simulating photon transport process in free space.

0 Bookmarks
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a method for mapping the two-dimensional (2D) bioluminescent images (BLIs) onto a three-dimensional (3D) body surface derived from the computed tomography (CT) volume data. This mapping includes two closely-related steps, the spatial registration of the 2D BLIs into the coordinate system of the CT volume data and the light flux recovering on the body surface from BLIs. By labeling markers on the body surface, we proposed an effective registration method to achieve the spatial position alignment. The subsequent light flux recovering is presented based on the inverse process of the free-space light transport model and taking the influence of the camera lens diaphragm into account. Incorporating the mapping procedure into the bioluminescence tomography (BLT) reconstruction, we developed a dual-modality BLT and CT imaging framework to provide both optical and anatomical information. The accuracy of the registration and the light flux recovering methods were evaluated via physical phantom experiments. The registration method was found to have a mean error of 0.41 mm and 0.35 mm in horizontal and vertical direction, and the accuracy of the light flux recovering method was below 5%. Furthermore, we evaluated the performance of the dual-modality BLT/CT imaging framework using a mouse phantom. Preliminary results revealed the potential and feasibility of the dual-modality imaging framework.
    Journal of X-Ray Science and Technology 01/2012; 20(1):31-44. · 1.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel method is presented for accurately reconstructing a spatially resolved map of diffuse light flux on a surface using images of the surface and a model of the imaging system. This is achieved by applying a model-based reconstruction algorithm with an existing forward model of light propagation through free space that accounts for the effects of perspective, focus, and imaging geometry. It is shown that flux can be mapped reliably and quantitatively accurately with very low error, <3% with modest signal-to-noise ratio. Simulation shows that the method is generalizable to the case in which mirrors are used in the system and therefore multiple views can be combined in reconstruction. Validation experiments show that physical diffuse phantom surface fluxes can also be reconstructed accurately with variability <3% for a range of object positions, variable states of focus, and different orientations. The method provides a new way of making quantitatively accurate noncontact measurements of the amount of light leaving a diffusive medium, such as a small animal containing fluorescent or bioluminescent markers, that is independent of the imaging system configuration and surface position.
    Journal of the Optical Society of America A 12/2013; 30(12):2572-84. · 1.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A multi-modal optical imaging system for quantitative 3D bioluminescence and functional diffuse imaging is presented, which has no moving parts and uses mirrors to provide multi-view tomographic data for image reconstruction. It is demonstrated that through the use of trans-illuminated spectral near-infrared measurements and spectrally constrained tomographic reconstruction, recovered concentrations of absorbing agents can be used as prior knowledge for bioluminescence imaging within the visible spectrum. Additionally, the first use of a recently developed multi-view optical surface capture technique is shown and its application to model-based image reconstruction and free-space light modelling is demonstrated. The benefits of model-based tomographic image recovery as compared to two-dimensional (2D) planar imaging are highlighted in a number of scenarios where the internal luminescence source is not visible or is confounding in 2D images. The results presented show that the luminescence tomographic imaging method produces 3D reconstructions of individual light sources within a mouse-sized solid phantom that are accurately localized to within 1.5 mm for a range of target locations and depths, indicating sensitivity and accurate imaging throughout the phantom volume. Additionally the total reconstructed luminescence source intensity is consistent to within 15%, which is a dramatic improvement upon standard bioluminescence imaging. Finally, results from a heterogeneous phantom with an absorbing anomaly are presented, demonstrating the use and benefits of a multi-view, spectrally constrained coupled imaging system that provides accurate 3D luminescence images.
    Measurement Science and Technology 09/2013; 24(10):105405. · 1.44 Impact Factor

Full-text (2 Sources)

View
38 Downloads
Available from
May 30, 2014