Article

Interleukin-6 Is an Important Mediator for Mitochondrial DNA Repair After Alcoholic Liver Injury in Mice

Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Hepatology (Impact Factor: 11.19). 12/2010; 52(6):2137-47. DOI: 10.1002/hep.23909
Source: PubMed

ABSTRACT We investigated the hypothesis that a prominent effect of chronic ethanol consumption is mitochondrial DNA (mtDNA) injury and compared this injury in IL-6 knockout (KO) and wild-type (WT) mice. Ethanol feeding for 4 weeks resulted in steatosis and oxidative mtDNA damage (8-OHdG) in both IL-6KO and WT mice. However, the WT mice were able to repair the injury by increased production of mtDNA repair enzymes (OGG-1, Neil 1) and check point (p21, p53) proteins and avoid the mtDNA mutations. By contrast the IL-6 KO mice were unable to repair mtDNA resulting in deletions and diminished transcription of the mtDNA encoded protein cytochrome c oxidase subunit-I (COI). The mitochondrial injury was reflected by decreased membrane potential, reduced levels of ATP, and apoptosis-inducing factor (AIF)-induced apoptosis. Conclusion: IL-6 plays a critical role in allowing the liver to recover from significant mtDNA oxidation caused by alcohol. The data suggests that IL-6 activates mtDNA repair enzymes and induces cell cycle arrest allowing time for mtDNA repair.

0 Followers
 · 
97 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic Macs, consisting of resident KCs and infiltrating monocytes/IMs, are thought to play an important role in the pathogenesis of ALD. Previous work has focused on KCs or studied hepatic Macs as one cell population. The aim of the current study is to distinguish IMs from KCs and to compare their phenotypes and functions. We show here that a 4-week ethanol feeding of C57BL/6J mice causes recruitment of IMs into the liver. KCs and IMs can be distinguished based on their differential expression of F4/80 and CD11b. IMs can be divided further into two subsets based on their differential expression of Ly6C. KCs and two subsets of IMs were separately purified by FACS. The phagocytosis abilities and the expression profiles of genes related to various functions were compared among different populations of hepatic Macs. Ly6C(low) IMs exhibit an anti-inflammatory and tissue-protective phenotype; in contrast, Ly6C(hi) IMs exhibit a proinflammatory, tissue-damaging phenotype. The ratio of Ly6C(hi)/Ly6C(low) increases when mice chronically fed ethanol were binged, which significantly enhanced liver injury. Moreover, upon phagocytosis of apoptotic hepatocytes, Ly6C(hi) IMs switch to Ly6C(low) IMs. Taken together, chronic ethanol feeding induces the recruitment of two subsets of hepatic IMs, which play different or even opposite roles in regulating liver inflammation and repair. These findings may not only increase our understanding of the complex functions of Macs in the pathogenesis of ALD but also help us to identify novel therapeutic targets for the treatment of this disease.
    Journal of Leukocyte Biology 07/2014; 96(4). DOI:10.1189/jlb.6A0114-004RR · 4.30 Impact Factor
  • Source
    Journal of Gastroenterology and Hepatology 08/2013; 28(S1). DOI:10.1111/jgh.12032 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IL-6/Stat3 is associated with the regulation of transcription of key cellular regulatory genes [microRNAs (miRNAs)] during different types of liver injury. This study evaluated the role of IL-6/Stat3 in regulating miRNA and miR-21 in alcoholic liver disease. By microarray, we identified that ethanol feeding significantly up-regulated 0.8% of known miRNAs in mouse liver compared to controls including miR-21. Similarly, the treatment of normal human hepatocytes (N-Heps) and hepatic stellate cells (HSCs) with ethanol and IL-6 significantly increased miR-21 expression. Overexpression of miR-21 decreased ethanol-induced apoptosis in both N-Heps and HSCs. The expression level of miR-21 was significantly increased after Stat3 activation in N-Heps and HSCs, in support of the concept that the 5'-promoter region of miR-21 is regulated by Stat3. Using real-time PCR, we confirmed that miR-21 activation is associated with ethanol-linked Stat3 binding of the miR-21 promoter. A combination of bioinformatics, PCR array, dual-luciferase reporter assay, and Western blot analysis revealed that Fas Ligand (TNF Superfamily, Member 6) (FASLG) and death receptor 5 (DR5) are the direct targets of miR-21. Furthermore, inhibition of miR-21 by specific Vivo-Morpholino and knockout of IL-6 in ethanol-treated mice also increased the expression of DR5 and FASLG in vivo during alcoholic liver injury. The identification of miR-21 as an important regulator of hepatic cell survival, transformation and remodeling in vitro, as well as its upstream modulators and down-stream targets will provide insight into the involvement of altered miRNA expression in contributing to ALD progression test novel therapeutic approaches for human alcoholic liver diseases.
    Journal of Biological Chemistry 08/2014; 289(40). DOI:10.1074/jbc.M114.602383 · 4.60 Impact Factor