Bacteria use type IV pili to walk upright and detach from surfaces.

Department of Bioengineering, California Nano Systems Institute,University of California, Los Angeles, CA 90024, USA.
Science (Impact Factor: 31.48). 10/2010; 330(6001):197. DOI: 10.1126/science.1194238
Source: PubMed

ABSTRACT Bacterial biofilms are structured multicellular communities involved in a broad range of infections. Knowing how free-swimming bacteria adapt their motility mechanisms near surfaces is crucial for understanding the transition between planktonic and biofilm phenotypes. By translating microscopy movies into searchable databases of bacterial behavior, we identified fundamental type IV pili-driven mechanisms for Pseudomonas aeruginosa surface motility involved in distinct foraging strategies. Bacteria stood upright and "walked" with trajectories optimized for two-dimensional surface exploration. Vertical orientation facilitated surface detachment and could influence biofilm morphology.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biofilms are surface-attached multicellular communities. Using single-cell tracking microscopy, we showed that a pilY1 mutant of Pseudomonas aeruginosa is defective in early biofilm formation. We leveraged the observation that PilY1 protein levels increase on a surface to perform a genetic screen to identify mutants altered in surface-grown expression of this protein. Based on our genetic studies, we found that soon after initiating surface growth, cyclic AMP (cAMP) levels increase, dependent on PilJ, a chemoreceptor-like protein of the Pil-Chp complex, and the type IV pilus (TFP). cAMP and its receptor protein Vfr, together with the FimS-AlgR two-component system (TCS), upregulate the expression of PilY1 upon surface growth. FimS and PilJ interact, suggesting a mechanism by which Pil-Chp can regulate FimS function. The subsequent secretion of PilY1 is dependent on the TFP assembly system; thus, PilY1 is not deployed until the pilus is assembled, allowing an ordered signaling cascade. Cell surface-associated PilY1 in turn signals through the TFP alignment complex PilMNOP and the diguanylate cyclase SadC to activate downstream cyclic di-GMP (c-di-GMP) production, thereby repressing swarming motility. Overall, our data support a model whereby P. aeruginosa senses the surface through the Pil-Chp chemotaxis-like complex, TFP, and PilY1 to regulate cAMP and c-di-GMP production, thereby employing a hierarchical regulatory cascade of second messengers to coordinate its program of surface behaviors. Biofilms are surface-attached multicellular communities. Here, we show that a stepwise regulatory circuit, involving ordered signaling via two different second messengers, is required for Pseudomonas aeruginosa to control early events in cell-surface interactions. We propose that our studies have uncovered a multilayered "surface-sensing" system that allows P. aeruginosa to effectively coordinate its surface-associated behaviors. Understanding how cells transition into the biofilm state on a surface may provide new approaches to prevent formation of these communities. Copyright © 2015 Luo et al.
    mBio 01/2015; 6(1). DOI:10.1128/mBio.02456-14 · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The self-organisation of collective behaviours often manifests as dramatic patterns of emergent large-scale order. This is true for relatively "simple" entities such as microbial communities and robot "swarms," through to more complex self-organised systems such as those displayed by social insects, migrating herds, and many human activities. The principle of stigmergy describes those self-organised phenomena that emerge as a consequence of indirect communication between individuals of the group through the generation of persistent cues in the environment. Interestingly, despite numerous examples of multicellular behaviours of bacteria, the principle of stigmergy has yet to become an accepted theoretical framework that describes how bacterial collectives self-organise. Here we review some examples of multicellular bacterial behaviours in the context of stigmergy with the aim of bringing this powerful and elegant self-organisation principle to the attention of the microbial research community.
    01/2015; 2015:387342. DOI:10.1155/2015/387342
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive responses greatly improve the competitive capacities of bacteria in diverse environments. Here, we investigate whether bacteria can adapt to a microenvironment with distinctive softness by examining the type-IV pili (TFP)-mediated motility of Pseudomonas aeruginosa cells on brush-like surfaces that are grafted with a layer of thermally sensitive polymer chains, where the softness of the brush-layer is tunable by applying a small temperature change (from 30 to 37 °C). We report that P. aeruginosa cells slingshot more on soft surfaces at a shear-thinning condition, which greatly facilitates their surface crawling by means of reducing energy dissipation. This adaptive response suggests that P. aeruginosa cells may be able to sense the local viscoelasticity and then deploy TFP to adapt to their physical surroundings.
    Nature Communications 11/2014; 5:5541. DOI:10.1038/ncomms6541 · 10.74 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014