Article

Genomic fossils calibrate the long-term evolution of hepadnaviruses.

Department of Biology, University of Texas, Arlington, Texas, United States of America.
PLoS Biology (Impact Factor: 11.77). 09/2010; 8(9). DOI: 10.1371/journal.pbio.1000495
Source: PubMed

ABSTRACT Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale.

0 Followers
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatitis B virus infection represents a major global health problem. Currently, there are more than 240 million chronically infected people worldwide. The development of chronic hepatitis B virus-mediated liver disease may lead to liver fibrosis, cirrhosis and eventually hepatocellular carcinoma. Recently, the discovery of the viral entry receptor sodium taurocholate cotransporting polypeptide has facilitated new approaches for a better understanding of viral physiopathology. Hopefully, these novel insights may give rise to the development of more effective antiviral therapy concepts during the next years. In this review, we will discuss the natural history of hepatitis B virus infection including the viral biology, the clinical course of infection and the role of the immune response.
    Medical Microbiology and Immunology 12/2014; 204(1). DOI:10.1007/s00430-014-0369-7 · 2.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of endogenous viral element evolution.ResultsThrough a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae, Bornaviridae, Circoviridae, and Parvoviridae. Strikingly, only members of the Retroviridae were observed in three nonavian reptile species used as a comparison. All nonretroviral endogenous viral elements are present at low copy numbers and in few species, with only endogenous hepadnaviruses widely distributed, although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance and host genome size, such that the occurrence of endogenous viral elements in bird genomes is 6¿13 fold less frequent than in mammals.Conclusions These results reveal that avian genomes harbor relatively small numbers of endogenous viruses, particularly those derived from RNA viruses, and hence are either less susceptible to viral invasions or purge them more effectively.
    Genome Biology 12/2014; 15(12):539. DOI:10.1186/PREACCEPT-1458153167121123 · 10.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepadnaviridae are double-stranded DNA viruses that infect some species of birds and mammals. This includes humans, where hepatitis B viruses (HBVs) are prevalent pathogens in considerable parts of the global population. Recently, endogenized sequences of HBVs (eHBVs) have been discovered in bird genomes where they constitute direct evidence for the coexistence of these viruses and their hosts from the late Mesozoic until present. Nevertheless, virtually nothing is known about the ancient host range of this virus family in other animals. Here we report the first eHBVs from crocodilian, snake, and turtle genomes, including a turtle eHBV that endogenized .207 million years ago. This genomic ''fossil'' is .125 million years older than the oldest avian eHBV and provides the first direct evidence that Hepadnaviridae already existed during the Early Mesozoic. This implies that the Mesozoic fossil record of HBV infection spans three of the five major groups of land vertebrates, namely birds, crocodilians, and turtles. We show that the deep phylogenetic relationships of HBVs are largely congruent with the deep phylogeny of their amniote hosts, which suggests an ancient amniote–HBV coexistence and codivergence, at least since the Early Mesozoic. Notably, the organization of overlapping genes as well as the structure of elements involved in viral replication has remained highly conserved among HBVs along that time span, except for the presence of the X gene. We provide multiple lines of evidence that the tumor-promoting X protein of mammalian HBVs lacks a homolog in all other hepadnaviruses and propose a novel scenario for the emergence of X via segmental duplication and overprinting of pre-existing reading frames in the ancestor of mammalian HBVs. Our study reveals an unforeseen host range of prehistoric HBVs and provides novel insights into the genome evolution of hepadnaviruses throughout their long-lasting association with amniote hosts.
    PLoS Genetics 12/2014; 10(12):e1004559. DOI:10.1371/journal.pgen.1004559 · 8.52 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from