XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina.

Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.43). 10/2010; 52(3):1567-72. DOI: 10.1167/iovs.10-5998
Source: PubMed

ABSTRACT To assess the survival of rod precursor cells transplanted into the Rd9 mouse, a model of X-linked retinal degeneration, and the effect of antiapoptotic therapy with X-linked inhibitor of apoptosis (XIAP) on preventing cell loss.
Dissociated retinal cells from P4 Nrlp-GFP mice were transplanted into the subretinal space of 2-, 5-, and 8-month-old Rd9 mice. Histology, immunohistochemistry, and quantification of integrated cells were performed every month for up to 3 months after transplantation. XIAP delivery to donor cells was accomplished by transfection with adenoassociated virus (AAV-XIAP). Intraretinal activation of immune modulators was assessed using a quantitative real-time polymerase chain reaction-based immune response array.
GFP-positive rod precursors were able to integrate into the outer nuclear layer (ONL) of the Rd9 retina. Transplanted cells underwent morphologic differentiation with the formation of inner and outer segments and synaptic projections to bipolar cells. Integration of donor cells into the ONL increased as a function of host age at the time of transplantation. The number of integrated cells was maximal at 1 month after transplantation and then decreased with time. Survival of integrated cells was significantly increased when donor cells were pretreated with AAV-XIAP. We did not detect any donor cell-specific activation of inflammation within the host retina.
Survival of integrated cells decreases with time after transplantation but can be significantly increased with XIAP antiapoptotic therapy. Preventing programmed cell death through XIAP therapy may be an important component of future therapeutic retinal cell transplantation strategies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate species possess two retinal guanylate cyclases (retGC1 and retGC2) and at least two guanylate cyclase activating proteins (GCAPs), GCAP1 and GCAP2. GCAPs function as Ca(2+) sensors that regulate the activity of guanylate cyclases. Together, these proteins regulate cGMP and Ca(2+) levels within the outer segments of rod and cone photoreceptors. Mutations in GUCY2D, the gene that encodes retGC1, are a leading cause of the most severe form of early onset retinal dystrophy, Leber congenital amaurosis (LCA1). These mutations, which reduce or abolish the ability of retGC1 to replenish cGMP in photoreceptors, are thought to lead to the biochemical equivalent of chronic light exposure in these cells. In spite of this, the majority of LCA1 patients retain normal photoreceptor laminar architecture aside from foveal cone outer segment abnormalities, suggesting they may be good candidates for gene replacement therapy. Work began in the 1980s to characterize multiple animal models of retGC1 deficiency. 34 years later, all models have been used in proof of concept gene replacement studies toward the goal of developing a therapy to treat GUCY2D-LCA1. Here we use the results of these studies as well as those of recent clinical studies to address specific questions relating to clinical application of a gene therapy for treatment of LCA1.
    Frontiers in Molecular Neuroscience 01/2014; 7:43.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy strategies for the treatment of inherited retinal diseases have made major advances in recent years. This review focuses on adeno-associated viral (AAV) vector approaches to treat retinal degeneration and, thus, prevent or delay the onset of blindness. Data from human clinical trials of gene therapy for retinal disease show encouraging signs of safety and efficacy from AAV vectors. Recent progress in enhancing cell-specific targeting and transduction efficiency of the various retinal layers plus the use of AAV-delivered growth factors to augment the therapeutic effect and limit cell death suggest even greater success in future human trials is possible.
    Translational research : the journal of laboratory and clinical medicine. 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in stem cell research have raised the possibility of stem cells repairing or replacing retinal photoreceptor cells that are either dysfunctional or lost in many retinal diseases. Various types of stem cells have been used to replace retinal photoreceptor cells. Recently, peripheral blood stem cells, a small proportion of pluripotent stem cells, have been reported to mainly exist in the peripheral blood mononuclear cells (PBMCs). In this study, the effects of pre-induced adult human PBMCs (hPBMCs) on the degenerative retinas of rd1 mice were investigated. Freshly isolated adult hPBMCs were pre-induced with the use of the conditioned medium of rat retinas for 4 days and were then labeled with chloromethyl-benzamidodialkylcarbocyanine (CM-DiI) and then transplanted into the subretinal space of the right eye of rd1 mice through a trans-scleral approach. The right eyes were collected 30 days after transplantation. The survival and migration of the transplanted cells in host retinas were investigated by whole-mount retinas, retinal frozen sections and immunofluorescent staining. After subretinal transplantation, pre-induced hPBMCs were able to survive and widely migrate into the retinas of rd1 mice. A few CM-DiI-labeled cells migrated into the inner nuclear layer and the retinal ganglion cell layer. Some transplanted cells in the subretinal space of rd1 host mice expressed the human photoreceptor-specific marker rhodopsin. This study suggests that pre-induced hPBMCs may be a potential cell source of cell replacement therapy for retinal degenerative diseases.
    Cytotherapy 11/2013; 15(11):1416-1425. · 3.06 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014