XIAP therapy increases survival of transplanted rod precursors in a degenerating host retina.

Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, USA.
Investigative ophthalmology & visual science (Impact Factor: 3.43). 10/2010; 52(3):1567-72. DOI: 10.1167/iovs.10-5998
Source: PubMed

ABSTRACT To assess the survival of rod precursor cells transplanted into the Rd9 mouse, a model of X-linked retinal degeneration, and the effect of antiapoptotic therapy with X-linked inhibitor of apoptosis (XIAP) on preventing cell loss.
Dissociated retinal cells from P4 Nrlp-GFP mice were transplanted into the subretinal space of 2-, 5-, and 8-month-old Rd9 mice. Histology, immunohistochemistry, and quantification of integrated cells were performed every month for up to 3 months after transplantation. XIAP delivery to donor cells was accomplished by transfection with adenoassociated virus (AAV-XIAP). Intraretinal activation of immune modulators was assessed using a quantitative real-time polymerase chain reaction-based immune response array.
GFP-positive rod precursors were able to integrate into the outer nuclear layer (ONL) of the Rd9 retina. Transplanted cells underwent morphologic differentiation with the formation of inner and outer segments and synaptic projections to bipolar cells. Integration of donor cells into the ONL increased as a function of host age at the time of transplantation. The number of integrated cells was maximal at 1 month after transplantation and then decreased with time. Survival of integrated cells was significantly increased when donor cells were pretreated with AAV-XIAP. We did not detect any donor cell-specific activation of inflammation within the host retina.
Survival of integrated cells decreases with time after transplantation but can be significantly increased with XIAP antiapoptotic therapy. Preventing programmed cell death through XIAP therapy may be an important component of future therapeutic retinal cell transplantation strategies.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: To examine the potential of NIH-maintained human embryonic stem cell (hESC) lines TE03 and UC06 to differentiate into retinal progenitor cells (hESC-RPCs) using the noggin/Dkk-1/IGF-1/FGF9 protocol. An additional goal is to examine the in vivo dynamics of maturation and retinal integration of subretinal and epiretinal (vitreous space) hESC-RPC grafts without immunosuppression. Methods: hESCs were neuralized in vitro with noggin for 2 weeks and expanded to derive neuroepithelial cells (hESC-neural precursors, NPs). Wnt (Integration 1 and wingless) blocking morphogens Dickkopf-1 (Dkk-1) and Insulin-like growth factor 1 (IGF-1) were used to direct NPs to a rostral neural fate, and fibroblast growth factor 9 (FGF9)/fibroblast growth factor-basic (bFGF) were added to bias the differentiation of developing anterior neuroectoderm cells to neural retina (NR) rather than retinal pigment epithelium (RPE). Cells were dissociated and grafted into the subretinal and epiretinal space of young adult (4–6-week-old) mice (C57BL/6J x129/Sv mixed background). Remaining cells were replated for (i) immunocytochemical analysis and (ii) used for quantitative reverse transcription polymerase chain reaction (qRT–PCR) analysis. Mice were sacrificed 3 weeks or 3 months after grafting, and the grafts were examined by histology and immunohistochemistry for survival of hESC-RPCs, presence of mature neuronal and retinal markers, and the dynamics of in vivo maturation and integration into the host retina. Results: At the time of grafting, hESC-RPCs exhibited immature neural/neuronal immunophenotypes represented by nestin and neuronal class III β-tubulin, with about half of the cells positive for cell proliferation marker Kiel University -raised antibody number 67 (Ki67), and no recoverin-positive (recoverin [+]) cells. The grafted cells expressed eye field markers paired box 6 (PAX6), retina and anterior neural fold homeobox (RAX), sine oculis homeobox homolog 6 (SIX6), LIM homeobox 2 (LHX2), early NR markers (Ceh-10 homeodomain containing homolog [CHX10], achaete-scute complex homolog 1 [MASH1], mouse atonal homolog 5 [MATH5], neurogenic differentiation 1 [NEUROD1]), and some retinal cell fate markers (brain-specific homeobox/POU domain transcription factor 3B [BRN3B], prospero homeobox 1 [PROX1], and recoverin). The cells in the subretinal grafts matured to predominantly recoverin [+] phenotype by 3 months and survived in a xenogenic environment without immunosuppression as long as the blood–retinal barrier was not breached by the transplantation procedure. The epiretinal grafts survived but did not express markers of mature retinal cells. Retinal integration into the retinal ganglion cell (RGC) layer and the inner nuclear layer (INL) was efficient from the epiretinal but not subretinal grafts. The subretinal grafts showed limited ability to structurally integrate into the host retina and only in cases when NR was damaged during grafting. Only limited synaptogenesis and no tumorigenicity was observed in grafts. Conclusions: Our studies show that (i) immunosuppression is not mandatory to xenogenic graft survival in the retina, (ii) the subretinal but not the epiretinal niche can promote maturation of hESC-RPCs to photoreceptors, and (iii) the hESC-RPCs from epiretinal but not subretinal grafts can efficiently integrate into the RGC layer and INL. The latter could be of value for long-lasting neuroprotection of retina in some degenerative conditions and glaucoma. Overall, our results provide new insights into the technical aspects associated with cell-based therapy in the retina. Photoreceptor death in retinal and macular degenerative diseases is a leading cause of inherited vision loss in developed countries. Novel therapeutic strategies have recently emerged, from mechanical to cell based, to repair Correspondence to: Igor O. neural circuits affected by photoreceptor (PR) cell loss [1]. Trophic factor delivery to extend the life of dying PRs has been pursued in experimental animals [2-5] and in some instances in the clinic [6]. Gene therapy approaches have been applied successfully in one type of Leber congenital amaurosis and remain viable when etiology of disease is understood and the size of a gene is not prohibitive for packaging capacity of the viral vector. Retinal implants [7,8] utilize a high-tech mechanical device placed on the retina to
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vertebrate species possess two retinal guanylate cyclases (retGC1 and retGC2) and at least two guanylate cyclase activating proteins (GCAPs), GCAP1 and GCAP2. GCAPs function as Ca(2+) sensors that regulate the activity of guanylate cyclases. Together, these proteins regulate cGMP and Ca(2+) levels within the outer segments of rod and cone photoreceptors. Mutations in GUCY2D, the gene that encodes retGC1, are a leading cause of the most severe form of early onset retinal dystrophy, Leber congenital amaurosis (LCA1). These mutations, which reduce or abolish the ability of retGC1 to replenish cGMP in photoreceptors, are thought to lead to the biochemical equivalent of chronic light exposure in these cells. In spite of this, the majority of LCA1 patients retain normal photoreceptor laminar architecture aside from foveal cone outer segment abnormalities, suggesting they may be good candidates for gene replacement therapy. Work began in the 1980s to characterize multiple animal models of retGC1 deficiency. 34 years later, all models have been used in proof of concept gene replacement studies toward the goal of developing a therapy to treat GUCY2D-LCA1. Here we use the results of these studies as well as those of recent clinical studies to address specific questions relating to clinical application of a gene therapy for treatment of LCA1.
    Frontiers in Molecular Neuroscience 01/2014; 7:43.
  • Human gene therapy. 08/2014; 25(8):671-678.

Full-text (2 Sources)

Available from
May 16, 2014