Plasmonic demultiplexer and guiding.

State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China.
ACS Nano (Impact Factor: 12.03). 10/2010; 4(11):6433-8. DOI: 10.1021/nn101334a
Source: PubMed

ABSTRACT Two-dimensional plasmonic demultiplexers for surface plasmon polaritons (SPPs), which consist of concentric grooves on a gold film, are proposed and experimentally demonstrated to realize light-SPP coupling, effective dispersion, and multiple-channel SPP guiding. A resolution as high as 10 nm is obtained. The leakage radiation microscopy imaging shows that the SPPs of different wavelengths are focused and routed into different SPP strip waveguides. The plasmonic demultiplexer can thus serve as a wavelength division multiplexing element for an integrated plasmonic circuit and also as a plasmonic spectroscopy or filter.

  • [Show abstract] [Hide abstract]
    ABSTRACT: On the basis of a novel phase modulation method by in-plane diffraction processes, a well-designed nanoarray on metal surface is proposed to realize a broad band focusing (bandwidth ∼100 nm) and a demultiplexing element (resolution ∼12 nm) of surface plasmon polariton (SPP) waves. Moreover, sublattice arrays are developed to achieve an improved demultiplexer and confocal SPP beams. The proposed scheme with implemented functionalities is designed totally in planar dimension, which is free of the SPP coupling process and indicates more practical application in photonic integrations.
    Nano Letters 09/2011; 11(10):4357-61. · 13.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Plasmonics provides an unparalleled method for manipulating light beyond the diffraction limit, making it a promising technology for the development of ultra-small, ultra-fast and power-efficient optical devices. To date, the majority of plasmonic devices are in the solid state and have limited tunability or configurability. Moreover, individual solid-state plasmonic devices lack the ability to deliver multiple functionalities. Here we utilize laser-induced surface bubbles on a metal film to demonstrate, for the first time, a plasmonic lens in a microfluidic environment. Our 'plasmofluidic lens' is dynamically tunable and reconfigurable. We record divergence, collimation and focusing of surface plasmon polaritons using this device. The plasmofluidic lens requires no sophisticated nanofabrication and utilizes only a single low-cost diode laser. Our results show that the integration of plasmonics and microfluidics allows for new opportunities in developing complex plasmonic elements with multiple functionalities, high-sensitivity and high-throughput biomedical detection systems, as well as on-chip, all-optical information processing techniques.
    Nature Communications 08/2013; 4:2305. · 10.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultra-broadband, efficient and unidirectional surface plasmon polariton (SPP) launching is of great concern in plasmonic devices and circuits. To address this challenge, a novel method adopting deep-subwavelength slits of subwavelength period (λSPP/4 ~ λSPP/3) in a thick metal film and under backside illumination is proposed. A new band pattern featuring broadband and wide angular characteristics, which is due to the coupling of the zeroth-order SPP resonance at the superstrate-metal interface and the first-order SPP resonance at the metal-substrate interface, is observed for the first time in the dispersion diagram. Unidirectional SPP launching efficiency of ~50%, ultra-broad bandwidth of up to 780 nm, covering the entire optical fiber communication bands, and relatively wide angular range of 7° are achieved. This remarkable efficient, ultra-broadband and wide angular performance is demonstrated by carefully designed experiments in the near infrared regime, showing good agreement with numerical results.
    Scientific reports. 01/2014; 4:5914.

Full-text (2 Sources)

Available from
May 27, 2014