Article

A nutrient approach to prostate cancer prevention: The Selenium and Vitamin E Cancer Prevention Trial (SELECT).

Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, USA.
Nutrition and Cancer (Impact Factor: 2.7). 10/2010; 62(7):896-918. DOI: 10.1080/01635581.2010.509833
Source: PubMed

ABSTRACT The Selenium and Vitamin E Cancer Prevention Trial (SELECT) randomized 35,533 healthy men, >55 yr old (>50 yr if African American), with normal digital rectal exams and prostate specific antigens <4 ng/ml to 1) 200 μg/day l-selenomethionine, 2) 400 IU/day all-rac-alpha-tocopheryl acetate (vitamin E), 3) both supplements, or 4) placebo for 7 to 12 yr. The hypotheses underlying SELECT, that selenium and vitamin E individually and together decrease prostate cancer incidence, derived from epidemiologic and laboratory evidence and significant secondary endpoints in the Nutritional Prevention of Cancer (selenium) and Alpha-Tocopherol Beta-Carotene (vitamin E) trials. In SELECT, prostate cancer incidence did not differ among the 4 arms: hazard ratios [99% confidence intervals (CIs)] for prostate cancer were 1.13 (99% CI = 0.95-1.35, P = 0.06; n = 473) for vitamin E, 1.04 (99% CI = 0.87-1.24, P = 0.62; n = 432) for selenium, and 1.05 (99% CI = 0.88-1.25, P = 0.52; n = 437) for selenium + vitamin E vs. 1.00 (n = 416) for placebo. Statistically nonsignificant increased risks of prostate cancer with vitamin E alone [relative risk (RR) = 1.13, P = 0.06) and newly diagnosed Type 2 diabetes mellitus with selenium alone (RR = 1.07, P = 0.16) were observed. SELECT data show that neither selenium nor vitamin E, alone or together, in the doses and formulations used, prevented prostate cancer in this heterogeneous population of healthy men.

0 Bookmarks
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although various lines of evidence suggest that oxidative stress plays a role in human prostate cancer initiation and progression, there is a paucity of direct evidence for its role in tumor initiation. To begin to address this issue, we developed a novel tumorigenesis model by reducing the expression of multiple selenoproteins (SPs) in mouse prostatic epithelium. This was accomplished via the prostate-specific deletion of Trsp, a gene that encodes a transfer RNA (SectRNA) required for the insertion of selenocysteine residues into SPs during their translation. By 6 weeks of age, Trsp-deficient mice exhibited widespread prostatic intraepithelial neoplasia lesions in all prostatic lobes, which then progressed to high-grade dysplasia and microinvasive carcinoma by 24 weeks. In contrast to other murine prostate cancer models, Trsp-deficient mice required neither the deletion of a tumor suppressor nor the transgenic introduction of an oncogene for prostatic intraepithelial neoplasia lesion development. In keeping with the antioxidant functions of several SPs, we found increases in lipid peroxidation markers in Trsp-deficient epithelial cells. This novel model of prostate neoplasia provides evidence for the existence of a selenoprotein or selenoproteins capable of acting as a tumor suppressor in the murine prostate.
    American Journal Of Pathology 01/2014; DOI:10.1016/j.ajpath.2013.11.025 · 4.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Significance: Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics particularly involving mitochondria-targeted antioxidants have attracted increasing interest as potentially effective therapies for several human diseases. Recent advances: Over the last 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (eg. TPP+) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds and liposomes. Critical issue: This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims to develop compounds capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Future directions: Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules.
    Antioxidants and Redox Signaling 12/2014; DOI:10.1089/ars.2014.5952 · 7.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prostate cancer (PCA) is the most commonly diagnosed cancer in men in the United States with growing worldwide incidence. Despite intensive investment in improving early detection, PCA often escapes timely detection and mortality remains high; this malignancy being the second highest cancer-associated mortality in American men. Collectively, health care costs of PCA results in an immense financial burden that is only expected to grow. Additionally, even in cases of successful treatment, PCA is associated with long-term and pervasive effects on patients. A proactive alternative to treating PCA is to prevent its occurrence and progression prior to symptomatic malignancy. This may serve to address the issue of burgeoning healthcare costs and increasing number of sufferers. One potential regimen in service of this alternative is PCA chemoprevention. Here, chemical compounds with cancer preventive efficacy are identified on the basis of their potential in a host of categories: their historical medicinal use, correlation with reduced risk in population studies, non-toxicity, their unique chemical properties, or their role in biological systems. PCA chemopreventive agents are drawn from multiple broad classes of chemicals, themselves further subdivided based on source or potential effect, with most derived from natural products. Many such compounds have shown efficacy, varying from inhibiting deregulated PCA cell signaling, proliferation, epithelial to mesenchymal transition (EMT), invasion, metastasis, tumor growth and angiogenesis and inducing apoptosis. Overall, these chemopreventive agents show great promise in PCA pre-clinical models, though additional work remains to be done in effectively translating these findings into clinical use.
    Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 01/2014; DOI:10.1016/j.mrfmmm.2013.12.003 · 4.44 Impact Factor