Development of a Validated Immunofluorescence Assay for H2AX as a Pharmacodynamic Marker of Topoisomerase I Inhibitor Activity

Laboratory of Human Toxicology and Pharmacology, Applied/Developmental Research Support Directorate, Science Applications International Corporation-Frederick, Inc., NationalCancer Institute-Frederick, Frederick, MD 21702, USA.
Clinical Cancer Research (Impact Factor: 8.72). 10/2010; 16(22):5447-57. DOI: 10.1158/1078-0432.CCR-09-3076
Source: PubMed


Phosphorylated histone H2AX (γH2AX) serves as a biomarker for formation of DNA double-strand break repair complexes. A quantitative pharmacodynamic immunofluorescence assay for γH2AX was developed, validated, and tested in human tumor xenograft models with the use of clinically relevant procedures.
The γH2AX immunofluorescence assay uses a novel data quantitation and image processing algorithm to determine the extent of nuclear-specific γH2AX staining in tumor needle biopsies and hair follicles collected from mice bearing topotecan-responsive A375 xenografts. After method validation with the topoisomerase I (Top1) inhibitor topotecan, the assay was used to compare pharmacodynamic properties of three structurally related indenoisoquinoline Top1 inhibitors.
γH2AX response to topotecan was quantified over a 60-fold dose range (0.016-1.0 times the murine single-dose maximum tolerated dose), and significant pharmacodynamic response was measured at the mouse equivalent of the 1.5 mg/m(2) clinical dose as well as the lowest dose tested. Responses were within a time window amenable for biopsy collection in clinical trials. These studies enabled characterization of dose and time responses for three indenoisoquinolines, resulting in selection of two for clinical evaluation. γH2AX response to Top1 inhibitors in hair follicles was also observable above a minimal dose threshold.
Our γH2AX assay is sufficiently accurate and sensitive to quantify γH2AX in tumor samples and will be used in correlative studies of two indenoisoquinolines in a phase I clinical trial at the National Cancer Institute. Data suggest that hair follicles may potentially serve as a surrogate tissue to evaluate tumor γH2AX response to Top1 inhibitors.

Download full-text


Available from: Joseph E Tomaszewski, Oct 08, 2015
36 Reads
  • Source
    • "These protein biomarker changes appeared to not depend on the chemical structure of the CHk1 inhibitor as a similar pattern of changes was observed with a range of Chk1 inhibitors with diverse chemotypes. Assays to measure γH2AX are reasonably well developed and are currently being tested clinically with different cancer therapeutics and may therefor prove a relatively straightforward marker to include in clinical studies [36-38]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Chk1 inhibitors are currently in clinical trials in combination with a range of cytotoxic agents and have the potential to potentiate the clinical activity of a large number of standard of care chemotherapeutic agents. Utilizing pharmacodynamic biomarkers to optimize drug dose and scheduling in these trials could greatly enhance the likelihood of clinical success. Methods In this study, we evaluated the in vitro potentiation of the cytotoxicity of a range of cytotoxic chemotherapeutic drugs by the novel Chk1 inhibitor V158411 in p53 mutant colon cancer cells. Pharmacodynamic biomarkers were evaluated in vitro. Results V158411 potentiated the cytotoxicity of a range of chemotherapeutic agents with distinct mechanisms of action in p53 mutant colon cancer cell lines grown in anchorage dependent or independent culture conditions. Analysis of pharmacodynamic biomarker changes identified dependencies on the chemotherapeutic agent, the concentration of the chemotherapeutic and the duration of time between combination treatment and biomarker analysis. A reduction in total Chk1 and S296/S317/S345 phosphorylation occurred consistently with all cytotoxics in combination with V158411 but did not predict cell line potentiation. Induction of γH2AX levels was chemotherapeutic dependent and correlated closely with potentiation of gemcitabine and camptothecin in p53 mutant colon cancer cells. Conclusions Our results suggest that Chk1 phosphorylation could be a useful biomarker for monitoring inhibition of Chk1 activity in clinical trials involving a range of V158411-chemotherapy combinations and γH2AX induction as a predictor of potentiation in combinations containing gemcitabine or camptothecin.
    BMC Cancer 07/2014; 14(1):483. DOI:10.1186/1471-2407-14-483 · 3.36 Impact Factor
  • Source
    • "Skin biopsies are necessary to obtain the basal keratinocytes, an issue which limits their routine use due to its invasive nature. It is noticeable in sections of skin biopsies that hair follicle cells often exhibit the largest γ-H2AX response after drug treatment [56] [57]. An alternative, and less invasive procedure for obtaining at least some of these follicle cells, is plucking [58] [59]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromatin is a dynamic complex of DNA and proteins that regulates the flow of information from genome to end product. The efficient recognition and faithful repair of DNA damage, particularly double-strand damage, is essential for genomic stability and cellular homeostasis. Imperfect repair of DNA double-strand breaks (DSBs) can lead to oncogenesis. The efficient repair of DSBs relies in part on the rapid formation of foci of phosphorylated histone H2AX (γ-H2AX) at each break site, and the subsequent recruitment of repair factors. These foci can be visualized with appropriate antibodies, enabling low levels of DSB damage to be measured in samples obtained from patients. Such measurements are proving useful to optimize treatments involving ionizing radiation, to assay in vivo the efficiency of various drugs to induce DNA damage, and to help diagnose patients with a variety of syndromes involving elevated levels of γ-H2AX. We will survey the state of the art of utilizing γ-H2AX in clinical settings. We will also discuss possibilities with other histone post-translational modifications. The ability to measure in vivo the responses of individual patients to particular drugs and/or radiation may help optimize treatments and improve patient care. This article is part of a Special Issue entitled: Chromatin in time and space.
    Biochimica et Biophysica Acta 03/2012; 1819(7):743-56. DOI:10.1016/j.bbagrm.2012.02.021 · 4.66 Impact Factor
  • Source
    • "The practicality of γ-H2AX as a reproducible pharmacodynamic marker of top 1 inhibitor activity has been evaluated with an assay developed and validated in two laboratories [22]. Using three structurally related indenoisoquinoline Top1 inhibitors in human xenograft mouse models, the assay gave significant responses in tumor biopsies and in skin snips at the mouse equivalents of clinically relevant doses. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The past year has seen considerable developments in the use of the DNA double-strand breaks (DSBs) to evaluate genome alterations in cells undergoing a variety of genotoxic stresses in vitro and in vivo. When the γ-H2AX foci which mark the DSBs are stained, individual breaks are detectible, making the assay suitable for situations requiring great sensitivity. While the methods for the detection of γ-H2AX foci are still evolving, particularly for in vivo detection, the basic assay has proven to be useful in several diverse areas of research. We will highlight recent developments of the assay in four areas: radiation biodosimetry, the evaluation or validation of new cancer drugs in clinical studies, chronic inflammation, and environmental genotoxicity.
    Aging 02/2011; 3(2):168-74. · 6.43 Impact Factor
Show more