Comparison of in vitro cell models in predicting in vivo brain entry of drugs.

School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
International Journal of Pharmaceutics (Impact Factor: 3.99). 10/2010; 402(1-2):27-36. DOI: 10.1016/j.ijpharm.2010.09.016
Source: PubMed

ABSTRACT Although several in vitro models have been reported to predict the ability of drug candidates to cross the blood-brain barrier, their real in vivo relevance has rarely been evaluated. The present study demonstrates the in vivo relevance of simple unidirectional permeability coefficient (P(app)) determined in three in vitro cell models (BBMEC, Caco-2 and MDCKII-MDR1) for nine model drugs (alprenolol, atenolol, metoprolol, pindolol, entacapone, tolcapone, baclofen, midazolam and ondansetron) by using dual probe microdialysis in the rat brain and blood as an in vivo measure. There was a clear correlation between the P(app) and the unbound brain/blood ratios determined by in vivo microdialysis (BBMEC r=0.99, Caco-2 r=0.91 and MDCKII-MDR1 r=0.85). Despite of the substantial differences in the absolute in vitro P(app) values and regardless of the method used (side-by-side vs. filter insert system), the capability of the in vitro models to rank order drugs was similar. By this approach, thus, the additional value offered by the true endothelial cell model (BBMEC) remains obscure. The present results also highlight the need of both in vitro as well as in vivo methods in characterization of blood-brain barrier passage of new drug candidates.

  • Source
    Dataset: EJPB
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 03/2014; · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract 1. The more relevant primary co-cultures of brain microvessel endothelial cells and astrocytes (BMEC) are less utilized for screening of potential CNS uptake when compared to intestinal and renal cell lines. 2. In this study, we characterized the temporal mRNA expression of major CNS transporters and receptors, including the transporter regulators Pxr, Ahr and Car in a rat BMEC co-cultured model. Permeability was compared with the Madin-Darby canine kidney (MDCKII)-MDR1 cell line and rat brain in situ perfusion model. 3. Our data demonstrated differential changes in expression of individual transporters and receptors over the culture period. Expression of ATP-binding cassette transporters was better retained than that of solute carrier transporters. The insulin receptor (IR) was best maintained among investigated receptors. AhR demonstrated high mRNA expression in rat brain capillaries and expression was better retained than Pxr or Car in culture. Mdr1b expression was up-regulated during primary culture, albeit Mdr1a mRNA levels were much higher. P-gp and Bcrp-1 were highly expressed and functional in this in vitro system. 4. Permeability measurements with 18 CNS marketed drugs demonstrated weak correlation between rBMEC model and rat in situ permeability and moderate correlation with MDCKII-MDR1 cells. 5. We have provided appropriate methodologies, as well as detailed and quantitative characterization data to facilitate improved understanding and rational use of this in vitro rat BBB model.
    Xenobiotica 05/2014; · 1.98 Impact Factor