Article

The Q fever epidemic in The Netherlands: history, onset, response and reflection.

Department of Bacteriology and TSEs, Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
Epidemiology and Infection (Impact Factor: 2.49). 10/2010; 139(1):1-12. DOI: 10.1017/S0950268810002268
Source: PubMed

ABSTRACT The 2007-2009 human Q fever epidemic in The Netherlands attracted attention due to its magnitude and duration. The current epidemic and the historical background of Q fever in The Netherlands are reviewed according to national and international publications. Seroprevalence studies suggest that Q fever was endemic in The Netherlands several decades before the disease was diagnosed in dairy goats and dairy sheep. This was in 2005 and the increase in humans started in 2007. Q fever abortions were registered on 30 dairy goat and dairy sheep farms between 2005 and 2009. A total of 3523 human cases were notified between 2007 and 2009. Proximity to aborting small ruminants and high numbers of susceptible humans are probably the main causes of the human Q fever outbreak in The Netherlands. In general good monitoring and surveillance systems are necessary to assess the real magnitude of Q fever.

Full-text

Available from: Hendrik-Jan Roest, Aug 08, 2014
2 Followers
 · 
224 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric dispersion models (ADMs) may help to assess human exposure to airborne pathogens. However, there is as yet limited quantified evidence that modelled concentrations are indeed associated to observed human incidence. We correlated human Q fever (caused by the bacterium Coxiella burnetii) incidence data in the Netherlands to modelled concentrations from three spatial exposure models: 1) a NULL model with a uniform concentration distribution, 2) a DISTANCE model with concentrations proportional to the distance between the source and residential addresses of patients, and 3) concentrations modelled by an ADM using three simple emission profiles. We used a generalized linear model to correlate the observed incidences to modelled concentrations and validated it using cross-validation. ADM concentrations generally correlated the best to the incidence data. The DISTANCE model always performed significantly better than the NULL model. ADM concentrations based on wind speeds exceeding threshold values of 0 and 2 m/s performed better than those based on 4 or 6 m/s. This might indicate additional exposure to bacteria originating from a contaminated environment. By adding meteorological information the correlation between modelled concentration and observed incidence improved, despite using three simple emission profiles. Although additional information is needed - especially regarding emission data - these results provide a basis for the use of ADMs to predict and to visualize the spread of airborne pathogens during livestock, industry and even bio-terroristic related outbreaks or releases to a surrounding human population.
    International Journal of Health Geographics 04/2015; 14(1-1):14. DOI:10.1186/s12942-015-0003-y · 2.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent Q fever epidemic in the Netherlands raised concerns about the potential risk of outbreaks in other European countries. In Switzerland, the prevalence of Q fever in animals and humans has not been studied in recent years. In this study, we describe the current situation with respect to Coxiella (C.) burnetii infections in small ruminants and humans in Switzerland, as a basis for future epidemiological investigations and public health risk assessments. Specific objectives of this cross-sectional study were to (i) estimate the seroprevalence of C. burnetii in sheep and goats, (ii) quantify the amount of bacteria shed during abortion and (iii) analyse temporal trends in human C. burnetii infections. The seroprevalence of C. burnetii in small ruminants was determined by commercial ELISA from a representative sample of 100 sheep flocks and 72 goat herds. Herd-level seroprevalence was 5.0% (95% CI: 1.6-11.3) for sheep and 11.1% (95% CI: 4.9-20.7) for goats. Animal-level seroprevalence was 1.8% (95% CI: 0.8-3.4) for sheep and 3.4% (95% CI: 1.7-6) for goats. The quantification of C. burnetii in 97 ovine and caprine abortion samples by real-time PCR indicated shedding of >10(4) bacteria/g in 13.4% of all samples tested. To our knowledge, this is the first study reporting C. burnetii quantities in a large number of small ruminant abortion samples. Annual human Q fever serology data were provided by five major Swiss laboratories. Overall, seroprevalence in humans ranged between 1.7% and 3.5% from 2007 to 2011, and no temporal trends were observed. Interestingly, the two laboratories with significantly higher seroprevalences are located in the regions with the largest goat populations as well as, for one laboratory, with the highest livestock density in Switzerland. However, a direct link between animal and human infection data could not be established in this study. © 2015 Blackwell Verlag GmbH.
    Transboundary and Emerging Diseases 04/2015; DOI:10.1111/tbed.12362 · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In 2007, Q fever started to become a major public health problem in the Netherlands, with small ruminants as most probable source. In order to reduce environmental contamination, control measures for manure were implemented because of the assumption that manure was highly contaminated with Coxiella burnetii. The aims of this study were 1) to clarify the role of C. burnetii contaminated manure from dairy goat farms in the transmission of C. burnetii to humans, 2) to assess the impact of manure storage on temperature profiles in dunghills, and 3) to calculate the decimal reduction time of the Nine Mile RSA 493 reference strain of C. burnetii under experimental conditions in different matrices. For these purposes, records on distribution of manure from case and control herds were mapped and a potential relation to incidences of human Q fever was investigated. Additionally, temperatures in two dunghills were measured and related to heat resistance of C. burnetii. Results of negative binomial regression showed no significant association between the incidence of human Q fever cases and the source of manure. Temperature measurements in the core and shell of dunghills on two farms were above 40°C for at least ten consecutive days which would result in a strong reduction of C. burnetii over time. Our findings indicate that there is no relationship between incidence of human Q fever and land applied manure from dairy goat farms with an abortion wave caused by C. burnetii. Temperature measurements in dunghills on two farms with C. burnetii shedding dairy goat herds further support the very limited role of goat manure as a transmission route during the Dutch human Q fever outbreak. It is very likely that the composting process within a dunghill will result in a clear reduction in the number of viable C. burnetii.
    PLoS ONE 01/2015; 10(3):e0121355. DOI:10.1371/journal.pone.0121355 · 3.53 Impact Factor