Accelerated Partial Breast Irradiation (APBI): A review of available techniques

Radiation Oncology Department, Texas Oncology Tyler, 910 East Houston Street, Tyler, Texas, USA.
Radiation Oncology (Impact Factor: 2.55). 10/2010; 5(1):90. DOI: 10.1186/1748-717X-5-90
Source: PubMed


Breast conservation therapy (BCT) is the procedure of choice for the management of the early stage breast cancer. However, its utilization has not been maximized because of logistics issues associated with the protracted treatment involved with the radiation treatment. Accelerated Partial Breast Irradiation (APBI) is an approach that treats only the lumpectomy bed plus a 1-2 cm margin, rather than the whole breast. Hence because of the small volume of irradiation a higher dose can be delivered in a shorter period of time. There has been growing interest for APBI and various approaches have been developed under phase I-III clinical studies; these include multicatheter interstitial brachytherapy, balloon catheter brachytherapy, conformal external beam radiation therapy and intra-operative radiation therapy (IORT). Balloon-based brachytherapy approaches include Mammosite, Axxent electronic brachytherapy and Contura, Hybrid brachytherapy devices include SAVI and ClearPath. This paper reviews the different techniques, identifying the weaknesses and strength of each approach and proposes a direction for future research and development. It is evident that APBI will play a role in the management of a selected group of early breast cancer. However, the relative role of the different techniques is yet to be clearly identified.

Download full-text


Available from: Chris Njeh, Mar 11, 2015
  • Source
    • "Interstitial breast brachytherapy is an APBI technique that has been practiced for more than 20 years and that has the most extensive follow-up [39]. Many prospective studies have reported low local recurrence with brachytherapy at 5 and 10 years, comparable to WBI [37,40-42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction The aim of this study was to investigate the effects of 131I gelatin microspheres (131I-GMS) on human breast cancer cells (MCF-7) in nude mice and the biodistribution of 131I-GMSs following intratumoral injections. Methods A total of 20 tumor-bearing mice were divided into a treatment group and control group and received intratumoral injections of 2.5 mci 131I-GMSs and nonradioactive GMSs, respectively. Tumor size was measured once per week. Another 16 mice received intratumoral injections of 0.4 mci 131I-GMSs and were subjected to single photon emission computed tomography (SPECT) scans and tissue radioactivity concentration measurements on day 1, 4, 8 and 16 postinjection. The 20 tumor-bearing mice received intratumoral injections of 0.4 mci [131I] sodium iodide solution and were subjected to SPECT scans and intratumoral radioactivity measurements at 1, 6, 24, 48 and 72 h postinjection. The tumors were collected for histological examination. Results The average tumor volume in the 131I-GMSs group on post-treatment day 21 decreased to 86.82 ± 63.6%, while it increased to 893.37 ± 158.12% in the control group (P < 0.01 vs. the 131I-GMSs group). 131I-GMSs provided much higher intratumoral retention of radioactivity, resulting in 19.93 ± 5.24% of the injected radioactivity after 16 days, whereas the control group retained only 1.83 ± 0.46% of the injected radioactivity within the tumors at 1 h postinjection. Conclusions 131I-GMSs suppressed the growth of MCF-7 in nude mice and provided sustained intratumoral radioactivity retention. The results suggest the potential of 131I-GMSs for clinical applications in radiotherapy for breast cancer.
    Radiation Oncology 06/2014; 9(1):144. DOI:10.1186/1748-717X-9-144 · 2.55 Impact Factor
  • Source
    • "The dose is generally delivered by intensity-modulated RT (IMRT) using two tangential beams. Furthermore, in low-risk breast cancer patients, accelerated partial-breast irradiation (APBI) studies using IMRT are ongoing (Oliver et al 2007, Njeh et al 2010, Livi et al 2010, Lewin et al 2012, Saikh et al 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The UMC Utrecht MRI/linac (MRL) design provides image guidance with high soft-tissue contrast, directly during radiotherapy (RT). Breast cancer patients are a potential group to benefit from better guidance in the MRL. However, due to the electron return effect, the skin dose can be increased in presence of a magnetic field. Since large skin areas are generally involved in breast RT, the purpose of this study is to investigate the effects on the skin dose, for whole-breast irradiation (WBI) and accelerated partial-breast irradiation (APBI). In ten patients with early-stage breast cancer, targets and organs at risk (OARs) were delineated on postoperative CT scans co-registered with MRI. The OARs included the skin, comprising the first 5 mm of ipsilateral-breast tissue, plus extensions. Three intensity-modulated RT techniques were considered (2× WBI, 1× APBI). Individual beam geometries were used for all patients. Specially developed MRL treatment-planning software was used. Acceptable plans were generated for 0 T, 0.35 T and 1.5 T, using a class solution. The skin dose was augmented in WBI in the presence of a magnetic field, which is a potential drawback, whereas in APBI the induced effects were negligible. This opens possibilities for developing MR-guided partial-breast treatments in the MRL.
    Physics in Medicine and Biology 08/2013; 58(17):5917-5930. DOI:10.1088/0031-9155/58/17/5917 · 2.76 Impact Factor
  • Source
    • "Intraoperative electron beam radiotherapy (IOERT) is an emerging technique for accelerated partial breast irradiation (APBI) [1] [2] [3] [4] [5]. If compared with other APBI techniques, IOERT has some definite advantage including an excellent sparing of normal tissues due to the electrons steep absorbed dose fall-off and to the opportunity to insert a shielding disk above the chest wall. "
    [Show abstract] [Hide abstract]
    ABSTRACT: To optimize the dose delivery to the breast lumpectomy target treated with intraoperative electron beam radiotherapy (IOERT). Two tools have been developed in our MU calculation software NEMO X to improve the dose homogeneity and the in-vivo dosimetry effectiveness for IOERT treatments. Given the target (tumor bed) thickness measured by the surgeon, NEMO X can provide auto dose normalization to cover 95% of the target volume with 95% of the prescription dose (PD) and a "best guess" of the expected dosimeter dose (EDD) for a deep seated in-vivo dosimeter. The tools have been validated with the data of 91 patients treated with IOERT on a LIAC mobile accelerator. In-vivo dosimetry has been performed with microMOSFETs positioned on the shielding disk inserted between the tumor bed and the chest wall. On average the auto normalization showed to provide better results if compared to conventional normalization rules in terms of mean target dose (|MTD-PD|/PD ≤ 5% in 95% vs. 53% of pts) and V107 percentage (left angle bracket V107 right angle bracket =19% vs. 32%). In-vivo dosimetry MOSFET dose (MD) showed a better correlation with the EDD guessed by our tool than just by assuming that EDD=PD (|MD-EDD|/EDD ≤ 5% in 57 vs. 26% of pts). NEMO X provides two useful tools for the on-line optimization of the dose delivery in IOERT. This optimization can help to reduce unnecessary large over-dosage regions and allows introducing reliable action levels for in-vivo dosimetry.
    Radiotherapy and Oncology 02/2012; 103(2):188-92. DOI:10.1016/j.radonc.2012.01.009 · 4.36 Impact Factor
Show more