Gault CR, Obeid LM, Hannun YAAn overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1-23

Department of Biochemistry, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
Advances in Experimental Medicine and Biology (Impact Factor: 1.96). 01/2010; 688:1-23. DOI: 10.1007/978-1-4419-6741-1_1
Source: PubMed


Sphingolipids constitute a class of lipids defined by their eighteen carbon amino-alcohol backbones which are synthesized in the ER from nonsphingolipid precursors. Modification of this basic structure is what gives rise to the vast family of sphingolipids that play significant roles in membrane biology and provide many bioactive metabolites that regulate cell function. Despite the diversity of structure and function of sphingolipids, their creation and destruction are governed by common synthetic and catabolic pathways. In this regard, sphingolipid metabolism can be imagined as an array of interconnected networks that diverge from a single common entry point and converge into a single common breakdown pathway. In their simplest forms, sphingosine, phytosphingosine and dihydrosphingosine serve as the backbones upon which further complexity is achieved. For example, phosphorylation of the C1 hydroxyl group yields the final breakdown products and/or the important signaling molecules sphingosine-1-phosphate, phytosphingosine-1-phosphate and dihydrosphingosine-1-phosphate, respectively. On the other hand, acylation of sphingosine, phytosphingosine, or dihydrosphingosine with one of several possible acyl CoA molecules through the action of distinct ceramide synthases produces the molecules defined as ceramide, phytoceramide, or dihydroceramide. Ceramide, due to the differing acyl CoAs that can be used to produce it, is technically a class of molecules rather than a single molecule and therefore may have different biological functions depending on the acyl chain it is composed of. At the apex of complexity is the group of lipids known as glycosphingolipids (GSL) which contain dozens of different sphingolipid species differing by both the order and type of sugar residues attached to their headgroups. Since these molecules are produced from ceramide precursors, they too may have differences in their acyl chain composition, revealing an additional layer of variation. The glycosphingolipids are divided broadly into two categories: glucosphingolipids and galactosphingolipids. The glucosphingolipids depend initially on the enzyme glucosylceramide synthase (GCS) which attaches glucose as the first residue to the C1 hydroxyl position. Galactosphingolipids, on the other hand, are generated from galactosylceramide synthase (GalCerS), an evolutionarily dissimilar enzyme from GCS. Glycosphingolipids are further divided based upon further modification by various glycosyltransferases which increases the potential variation in lipid species by several fold. Far more abundant are the sphingomyelin species which are produced in parallel with glycosphingolipids, however they are defined by a phosphocholine headgroup rather than the addition of sugar residues. Although sphingomyelin species all share a common headgroup, they too are produced from a variety of ceramide species and therefore can have differing acyl chains attached to their C-2 amino groups. Whether or not the differing acyl chain lengths in SMs dictate unique functions or important biophysical distinctions has not yet been established. Understanding the function of all the existing glycosphingolipids and sphingomyelin species will be a major undertaking in the future since the tools to study and measure these species are only beginning to be developed (see Fig 1 for an illustrated depiction of the various sphingolipid structures). The simple sphingolipids serve both as the precursors and the breakdown products of the more complex ones. Importantly, in recent decades, these simple sphingolipids have gained attention for having significant signaling and regulatory roles within cells. In addition, many tools have emerged to measure the levels of simple sphingolipids and therefore have become the focus of even more intense study in recent years. With this thought in mind, this chapter will pay tribute to the complex sphingolipids, but focus on the regulation of simple sphingolipid metabolism.

Download full-text


Available from: Lina M Obeid, Feb 17, 2015
32 Reads
    • "The metabolism of sphingolipids is organized around ceramide as a central hub for lipid interconversion, and is dictated by the strict substrate specificities of the three subtypes of CDases and the six mammalian ceramide synthases (Gault et al., 2010). This work establishes two related strategies that nCDase uses to generate specificity toward ceramide: (1) specific recognition of the 1-hydroxyl headgroup of ceramide and (2) discrimination of larger headgroups through steric hindrance. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neutral ceramidase (nCDase) catalyzes conversion of the apoptosis-associated lipid ceramide to sphingosine, the precursor for the proliferative factor sphingosine-1-phosphate. As an enzyme regulating the balance of ceramide and sphingosine-1-phosphate, nCDase is emerging as a therapeutic target for cancer. Here, we present the 2.6-Å crystal structure of human nCDase in complex with phosphate that reveals a striking, 20-Å deep, hydrophobic active site pocket stabilized by a eukaryotic-specific subdomain not present in bacterial ceramidases. Utilizing flexible ligand docking, we predict a likely binding mode for ceramide that superimposes closely with the crystallographically observed transition state analog phosphate. Our results suggest that nCDase uses a new catalytic strategy for Zn(2+)-dependent amidases, and generates ceramide specificity by sterically excluding sphingolipids with bulky headgroups and specifically recognizing the small hydroxyl head group of ceramide. Together, these data provide a foundation to aid drug development and establish common themes for how proteins recognize the bioactive lipid ceramide. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Structure 07/2015; 23(8). DOI:10.1016/j.str.2015.06.013 · 5.62 Impact Factor
  • Source
    • "Among sphingolipids, ceramide was firstly reported to induce cell differentiation and death in human leukemia HL-60 cells (Obeid et al., 1993; Okazaki et al., 1989). To clarify the mechanism to induce cell death, the subcellular compartmentalization of active ceramide, the putative diverse function among ceramide molecular species and its regulation by metabolic enzymes have been investigated in several kinds of cancers (Gault et al., 2010; Park et al., 2014). Recently, sphingosine-1-phosphate (S1P) and sphingomyelin (SM) are also recognized as biological regulators in many cell functions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingolipids such as ceramide, sphingosine-1-phosphate and sphingomyelin have been emerging as bioactive lipids since ceramide was reported to play a role in human leukemia HL-60 cell differentiation and death. Recently, it is well-known that ceramide acts as an inducer of cell death, that sphingomyelin works as a regulator for microdomain function of the cell membrane, and that sphingosine-1- phosphate plays a role in cell survival/proliferation. The lipids are metabolized by the specific enzymes, and each metabolite could be again returned to the original form by the reverse action of the different enzyme or after a long journey of many metabolizing/synthesizing pathways. In addition, the metabolites may serve as reciprocal biomodulators like the rheostat between ceramide and sphingosine-1-phosphate. Therefore, the change of lipid amount in the cells, the subcellular localization and the downstream signal in a specific subcellular organelle should be clarified to understand the pathobiological significance of sphingolipids when extracellular stimulation induces a diverse of cell functions such as cell death, proliferation and migration. In this review, we focus on how sphingolipids and their metabolizing enzymes cooperatively exert their function in proliferation, migration, autophagy and death of hematopoetic cells, and discuss the way developing a novel therapeutic device through the regulation of sphingolipids for effectively inhibiting cell proliferation and inducing cell death in hematological malignancies such as leukemia, malignant lymphoma and multiple myeloma.
    Moleculer Cells 05/2015; 38(6). DOI:10.14348/molcells.2015.0118 · 2.09 Impact Factor
  • Source
    • "The prominent position of sphingomyelinases is mainly attributed to the abundance of their substrate SM in cell membranes (van Meer et al., 2008). Because of its spatially bulky head group, SM is restricted to the membrane leaflet where it is generated, i.e., the luminal Golgi leaflet or – after vesicular transport – the outer leaflet of the plasma membrane (Gault et al., 2010), unless flipping is aided by a specific flippase (Sharom, 2011). However, of the known flippases , none is active toward SM (Takatsu et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Acid sphingomyelinase (ASM), a key enzyme in sphingolipid metabolism, hydrolyzes sphingomyelin to ceramide and phosphorylcholine. In mammals, the expression of a single gene, SMPD1, results in two forms of the enzyme that differ in several characteristics. Lysosomal ASM (L-ASM) is located within the lysosome, requires no additional Zn2+ ions for activation and is glycosylated mainly with high-mannose oligosaccharides. By contrast, the secretory ASM (S-ASM) is located extracellularly, requires Zn2+ ions for activation, has a complex glycosylation pattern and has a longer in vivo half-life. In this review, we summarize current knowledge regarding the physiology and pathophysiology of S-ASM, including its sources and distribution, molecular and cellular mechanisms of generation and regulation and relevant in vitro and in vivo studies. Polymorphisms or mutations of SMPD1 lead to decreased S-ASM activity, as detected in patients with Niemann-Pick disease B. Thus, lower serum/plasma activities of S-ASM are trait markers. No genetic causes of increased S-ASM activity have been identified. Instead, elevated activity is the result of enhanced release (e.g., induced by lipopolysaccharide and cytokine stimulation) or increased enzyme activation (e.g., induced by oxidative stress). Increased S-ASM activity in serum or plasma is a state marker of a wide range of diseases. In particular, high S-ASM activity occurs in inflammation of the endothelium and liver. Several studies have demonstrated a correlation between S-ASM activity and mortality induced by severe inflammatory diseases. Serial measurements of S-ASM reveal prolonged activation and, therefore, the measurement of this enzyme may also provide information on past inflammatory processes. Thus, S-ASM may be both a promising clinical chemistry marker and a therapeutic target.
    Biological Chemistry 03/2015; 396(6-7). DOI:10.1515/hsz-2015-0109 · 3.27 Impact Factor
Show more