Effect of ICSI on gene expression and development of mouse preimplantation embryos.

Department of Obstetric, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
Human Reproduction (Impact Factor: 4.59). 10/2010; 25(12):3012-24. DOI: 10.1093/humrep/deq266
Source: PubMed

ABSTRACT In vitro culture (IVC) and IVF of preimplantation mouse embryos are associated with changes in gene expression. It is however not known whether ICSI has additional effects on the transcriptome of mouse blastocysts.
We compared gene expression and development of mouse blastocysts produced by ICSI and cultured in Whitten's medium (ICSI(WM)) or KSOM medium with amino acids (ICSI(KSOMaa)) with control blastocysts flushed out of the uterus on post coital Day 3.5 (in vivo). In addition, we compared gene expression in embryos generated by IVF or ICSI using WM. Global pattern of gene expression was assessed using the Affymetrix 430 2.0 chip.
Blastocysts from ICSI fertilization have a reduction in the number of trophoblastic and inner cell mass cells compared with embryos generated in vivo. Approximately 1000 genes are differentially expressed between ICSI blastocyst and in vivo blastocysts; proliferation, apoptosis and morphogenetic pathways are the most common pathways altered after IVC. Unexpectedly, expression of only 41 genes was significantly different between embryo cultured in suboptimal conditions (WM) or optimal conditions (KSOM(aa)).
Our results suggest that fertilization by ICSI may play a more important role in shaping the transcriptome of the developing mouse embryo than the culture media used.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although intracytoplasmic sperm injection (ICSI) allows proper fertilization in most cases of male sub fertility, it is one of the most unphysiological techniques in assisted reproductive technologies (ART). Thus, over the last decade, researchers have tried to improve sperm observation with higher-resolution microscopy techniques such as the intracytoplasmic morphologically selected sperm injection (IMSI) technique. In order to identify literatures for this review, the PubMed database was searched from 2000 onwards using the terms IMSI, motile sperm organelle morphology examination (MSOME) and sperm vacuole. Approximately 10 years after the introduction of the MSOME and IMSI procedures, several questions related to the prevalence, origin, location, and clinical consequences of sperm vacuoles have not yet been clarified. It seems that IMSI as a routine application is not state of the art and the only confirmed indications for IMSI are recurrent implantation failure following ICSI and severe male factor.
    International journal of fertility & sterility 07/2014; 8(2):105-12. · 0.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of assisted reproductive technologies (ART) such as in vitro fertilization (IVF) has resulted in the birth of more than 5 million children. While children conceived by these technologies are generally healthy, there is conflicting evidence suggesting an increase in adult-onset complications like glucose intolerance and high blood pressure in IVF children. Animal models indicate similar potential risks. It remains unclear what molecular mechanisms may be operating during in vitro culture to predispose the embryo to these diseases. One of the limitations faced by investigators is the paucity of the material in the preimplantation embryo to test for molecular analysis. To address this problem, we generated mouse embryonic stem cells (mESC) from blastocysts conceived after natural mating (mESCFB) or after IVF, using optimal (KSOM + 5% O2; mESCKAA) and suboptimal (Whitten's Medium, + 20% O2, mESCWM) conditions. All three groups of embryos showed similar behavior during both derivation and differentiation into their respective mESC lines. Unsupervised hierarchical clustering of microarray data showed that blastocyst culture does not affect the transcriptome of derived mESCs. Transcriptomic changes previously observed in the inner cell mass (ICM) of embryos derived in the same conditions were not present in mESCs, regardless of method of conception or culture medium, suggesting that mESC do not fully maintain a memory of the events occurring prior to their derivation. We conclude that the fertilization method or culture media used to generate blastocysts does not affect differentiation potential, morphology and transcriptome of mESCs.
    PLoS ONE 02/2015; 10(2):e0117422. DOI:10.1371/journal.pone.0117422 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Some reports have linked intracytoplasmic sperm injection (ICSI) with chromosomal abnormalities, low developmental potential and altered gene expression in embryos. ICSI has also been linked with obesity, early aging and increased incidence of tumors in offspring. Other reports have demonstrated that some of these complications disappeared within a few weeks of life or even showed a lack of such associations. The aim of this study was to evaluate and compare embryo development, quality and gene expression in bovine embryos generated by ICSI and by conventional in vitro fertilization (IVF) insemination. The results showed differences in cleavage (88.5% in IVF and 64.1% in ICSI) and blastocyst formation rates (36.1% in IVF and 22.3% in ICSI). The proportion of ICM cells to total cell count was higher in ICSI (39.2%) than in IVF embryos (29.5%). However, no differences were observed in the total embryonic cell numbers (159.3±28.5 and 161.2±56.2 for IVF and ICSI, respectively) or in the proportion of apoptotic nuclei to the total embryonic cell numbers (2.12 and 2.64% for IVF and ICSI, respectively). Gene expression analysis showed a down-regulation of insulin-like growth factor 2 (IGF2) and overexpression of bcl-2-like protein 4 (BAX), octamer-binding transcription factor four (OCT4), interferon-tau (IFNt), Mn-superoxide dismutase in the mitochondria (SOD2), and catalase (CAT) in embryos generated by ICSI. In conclusion, our study demonstrated differences in the morphological development of bovine embryos as well as in the expression of genes involved in early development between ICSI and IVF embryos. The results may indicate lower developmental potential of ICSI embryos compared with that of IVF. Copyright © 2014 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
    Reproductive biology 11/2014; 15(1). DOI:10.1016/j.repbio.2014.11.001 · 1.05 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014