Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures.

BRD School of Biosciences, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Post Box No. 39, Sardar Patel University, Vallabh Vidyanagar 388 120, Anand, Gujarat, India.
Bioresource Technology (Impact Factor: 5.04). 09/2010; 102(2):1795-802. DOI: 10.1016/j.biortech.2010.09.025
Source: PubMed

ABSTRACT The present study is focused on purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures--hormidium sp. A27 DM, Lyngbya sp. A09 DM and Halomicronema sp. A32 DM. 'Phycoerythrin' was successfully purified and characterized. On SDS-PAGE, the PE purified from all three young cultures showed four bands--corresponding to α and β subunits of each of PE-I and PE-II. However, phycoerythrin purified after prolonged growth of Phormidium sp. A27 DM and Halomicronema sp. A32DM showed only one band corresponding to 14 kDa whereas Lyngbya sp. A09 DM continued to produce uncleaved phycoerythrin. The absorption spectra of purified PEs from all the three young and old cultures showed variations however the fluorescence studies of the purified PEs in all cases gave the emission spectra at around 580 nm. The described work is of great importance to understand the role of phycoerythrin in adapting cyanobacteria to stress conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the present study, we tested the antioxidant activity of phycoerythrin (PE, an oligomeric light harvesting protein isolated from Lyngbya sp. A09DM) to curtail aging effects in Caenorhabditis elegans. Purified PE (100 μg/ml) dietary supplement was given to C. elegans and investigated for its anti-aging potential. PE treatment improved the mean life span of wild type (N2)-animals from 15 ± 0.1 to 19.9 ± 0.3 days. PE treatment also moderated the decline in aging-associated physiological functions like pharyngeal pumping and locomotion with increasing age of N2 worms. Moreover, PE treatment also enhanced the stress tolerance in 5-day-aged adults with increase in mean survival rate from 22.2 ± 2.5 to 41.6 ± 2.5 % under thermo stress and from 30.1 ± 3.2 to 63.1 ± 6.4 % under oxidative (hydrogen peroxide)-stress. PE treatment was also noted to moderate the heat-induced expression of human amyloid-beta(Aβ1-42) peptide and associated paralysis in the muscle tissues of transgenic C. elegans CL4176 (Alzheimer's disease model). Effectiveness of PE in expanding the life span of mutant C. elegans, knockout for some up (daf-2 and age-1)- and down (daf-16)-stream regulators of insulin/IGF-1 signaling (IIS), shows the independency of PE effect from DAF-2-AGE-1-DAF-16 signaling pathway. Moreover, the inability of PE in expanding the life span of hsf-1 knockout C. elegans(sy441) suggests the dependency of PE effect on heat shock transcription factor (HSF-1) controlling stress-induced gene expression. In conclusion, our results demonstrated a novel anti-aging activity of PE which conferred increased resistance to cellular stress resulting in improved life span and health span of C. elegans.
    Journal of the American Aging Association 10/2014; 36(5):9717. · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study a simple protocol was developed for purifying phycocyanin (PC) from Spirulina platensis (CCC540) by using ammonium sulphate precipitation, followed by a single step chromatography by using DEAE-Cellulose-11 and acetate buffer. Precipitation with 65 % ammonium sulphate resulted in 80 % recovery of phycocyanin with purity of 1.5 (A620/A280). Thro1ugh chromatography an 80 % recovery of phycocyanin with a purity of 4.5 (A620/A280) was achieved. In SDS_PAGE analysis, the purified PC showed the presence of two subunit α (16 kD) and β (17 kD).
    Indian journal of plant physiology / official publication of the Indian Society for Plant Physiology. 06/2014; 19:184-188.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study probes into the purification of phycobiliproteins, and characterization of their in vitro anti-oxidant activity. Moreover the study also demonstrates the use of antioxidant virtue of phycoerythrin in moderating the phenomenon of aging in Caenorhabditis elegans. Phycoerythrin, phycocyanin and allophycocyanin were purified successfully from Lyngbya sp. A09DM by ammonium sulfate fractionation appended with Triton X-100 intercession. The success of protocol was examined by a series of biochemical characterization like SDS-PAGE, native-PAGE, UV-visible spectroscopy and fluorescence spectroscopy ensuring purity, integrity and functionality of purified phycoerythrin, phycocyanin and allophycocyanin. Purified phycobiliproteins were evaluated for antioxidant and metal ion chelating activity by various in vitro antioxidant assay systems. Results showed significant and dose-dependent antioxidant as well as metal chelating potential of all phycobiliproteins in decreasing order of phycoerythrin > phycocyanin > allophycocyanin. Expansion in lifespan and improvement in pharyngeal pumping of Caenorhabditis elegans were noticed upon pre-treatment with phycoerythrin (100 μg ml−1). Moreover, phycoerythrin mediated increase in worm survival under oxidative stress revealed that the life expansion effect of phycoerythrin on nematode is in part by an action of its antioxidant virtue. These results collectively added up evidence in favor of the ‘Free - radical theory of aging’. The present report, for the first time, describes antioxidant potential of phycoerythrin and its use in extending life-span of Caenorhabditis elegans.
    PROCESS BIOCHEMISTRY 07/2014; · 2.52 Impact Factor