Article

Geophagy and potential health implications: geohelminths, microbes and heavy metals

Medical University of Vienna, Center for Public Health, Department of General Practice and Family Medicine, Unit Ethnomedicine and International Health, Waehringerstrasse 25, 1090 Vienna, Austria.
Transactions of the Royal Society of Tropical Medicine and Hygiene (Impact Factor: 1.93). 10/2010; 104(12):787-95. DOI: 10.1016/j.trstmh.2010.09.002
Source: PubMed

ABSTRACT The practice of geophagy (soil-eating) is widespread among pregnant and breast-feeding women in sub-Saharan Africa. To assess some of the potential risks accompanying the consumption of geophagic material, we analysed contamination with bacteria, fungi, and geohelminths as well as heavy metals (lead, mercury and cadmium) in 88 African geophagic soil samples, which were purchased in Central, West and East Africa, Europe and the United States. Median microbial viable counts of positive samples were 440 cfu/g (maximum 120,000 cfu/g). The median metal concentrations were 40 mg/kg lead (up to 148 mg/kg), 0.05 mg/kg mercury (up to 0.64 mg/kg), and 0.055 mg/kg cadmium (maximum 0.57 mg/kg). No geohelminth eggs were found in these samples. Our results suggest that geophagic soil samples can be highly contaminated with microbes and may contain high levels of lead. Geophagy, however, is not a cause of adult helminth infection. The periodic consumption of geophagic materials at high dosages might be problematic particularly during pregnancy.

Download full-text

Full-text

Available from: Claudia Gundacker, Jul 22, 2014
1 Follower
 · 
181 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Geopahgia is practiced in many parts of the world and can be associated with medicinal treatments, ceremonial events and spiritual behaviours/practices. This is the first report on a systematic investigation and description of the bacterial diversity in soil regularly ingested by geophagic individuals using a culture-independent method. Diversity in 17 different mining sites was investigated using DGGE. Genetic material from Pantoea, Stenotrophomonas, Listeria, Rhodococcus and Sphingomonads were present in many of the soil samples. Species from these genera are recognized, potential or immerging human pathogens, and are of special interest in immune-compromised individuals. Other genera able to produce a variety of bacteriocins and antimicrobial/antifungal substances inhibitory towards food borne pathogens (Dactylosporangium and Bacillus) and able to degrade a range of environmental pollutants and toxins (Duganella and Massilia) were also present. These essential insights provide the platform for adjusting culturing strategies to isolate specific bacteria, further phylogenetic studies and microbial-mining prospect for bacterial species of possible economic importance.
    International Journal of Environmental Health Research 05/2014; DOI:10.1080/09603123.2014.915019 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal smelting is often responsible for local contamination of environmental compartments. Dust materials escaping from the smelting facilities not only settle in the soil, but can also have direct effects on populations living close to these operations (by ingestion or inhalation). In this particular study, we investigate dusts from Cu-Co metal smelters in the Zambian Copperbelt, using a combination of mineralogical techniques (XRD, SEM/EDS, and TEM/EDS), in order to understand the solid speciation of the contaminants, as well as their bioaccessibility using in vitro tests in simulated gastric and lung fluids to assess the exposure risk for humans. The leaching of metals was mainly dependent on the contaminant mineralogy. Based on our results, a potential risk can be recognized, particularly from ingestion of the dust, with bioaccessible fractions ranging from 21 to 89 % of the total contaminant concentrations. In contrast, relatively low bioaccessible fractions were observed for simulated lung fluid extracts, with values ranging from 0.01 % (Pb) up to 16.5 % (Co) of total contaminant concentrations. Daily intakes via oral exposure, calculated for an adult (70 kg, ingestion rate 50 mg dust per day), slightly exceeded the tolerable daily intake limits for Co (1.66× for fly ash and 1.19× for slag dust) and occasionally also for Pb (1.49×, fly ash) and As (1.64×, electrostatic precipitator dust). Cobalt has been suggested as the most important pollutant, and the direct pathways of the population's exposures to dust particles in the industrial parts of the Zambian Copperbelt should be further studied in interdisciplinary investigations.
    Environmental Geochemistry and Health 04/2014; 36(5). DOI:10.1007/s10653-014-9609-4 · 2.57 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite baboons' widespread distribution across Africa, geophagy among all subspecies has been poorly documented. We used video camera traps and soil analyses to investigate geophagy in chacma baboons (Papio cynocephalus ursinus) inhabiting the Western Cape of South Africa. During an 18-month study, from August 2009 to January 2011, we continually monitored the largest and most frequently visited geophagy sites with camera traps for 545 days and captured soil consumption at one or more sites on 266 of those days (49%). In 3,500 baboon visits to geophagy sites, video camera traps captured 58.6 hr of geophagy. From these data, we evaluated site preference based on time spent consuming soil among these four geophagy sites. One hundred and seventy days of soil consumption data from the most frequently visited geophagy site allowed us to look for demographic trends in geophagy. Selected consumed soils from geophagy sites were analyzed for mineral, physical, and chemical properties. The baboons spent more time consuming white alkaline soils with high percentages of clay and fine silt, which contained higher concentrations of sodium than non-white acidic soils that contained higher concentrations of iron. Our data indicate that pregnant chacma baboons spent more time consuming soil at monitored geophagy sites than baboons of any other age class, sex, or reproductive state. Based on analytical results, the soils consumed would be effective at alleviating gastrointestinal distress and possibly supplementing minerals for all age/sex classes, but potentially for different age/sex requirements.
    American Journal of Primatology 01/2012; 74(1):48-57. DOI:10.1002/ajp.21008 · 2.14 Impact Factor