Tamoxifen as an effective neuroprotectant in an endovascular canine model of stroke: Laboratory investigation

Department of Surgery, Division of Neurosurgery, Albany Medical College, Albany, New York, USA.
Journal of Neurosurgery (Impact Factor: 3.74). 10/2010; 114(4):1117-26. DOI: 10.3171/2010.8.JNS09352
Source: PubMed


Tamoxifen has been shown to be a potent neuroprotectant against stroke in rodents. Because other neuroprotectant medications have failed in human trials, a study of tamoxifen in a large-animal model was necessary to further assess the drug's effectiveness. For this study, the authors developed an endovascular model of anterior circulation infarction in canines to mimic the human clinical condition. They assessed the following hypotheses: 1) that they will be able to consistently produce an internal carotid artery (ICA) terminus infarction and 2) that tamoxifen is an effective neuroprotectant against stroke in canines.
In 24 male beagles (weight 9-11 kg), bilateral femoral artery cutdowns were performed, and the vertebral artery and left ICA were each selectively catheterized. Under fluoroscopic guidance, a microcatheter was introduced via the vertebral artery, guiding the catheter into the basilar artery, posterior communicating artery, and ICA terminus. A 1-ml clot was injected in the terminus, occluding the middle cerebral artery (MCA) and anterior cerebral artery (ACA) origin. In the first 12 canines, the occlusions were confirmed by angiography. A Canine Stroke Score (CSS) was assigned (score range 0-18 [0 = intact on examination, 18 = comatose]). The animals were then killed and their brains stained with 2,3,5-triphenyltetrazolium chloride (TTC). The subsequent 12 canines underwent a blinded randomized study in which the authors compared the results of tamoxifen (5 mg/kg) infused intravenously 1 hour after clot injection with an equal volume of vehicle (dimethylsulfoxide). After 3 hours, the animals underwent MR imaging, were extubated, and clinical examinations were performed. The canines were killed at 8 hours after clot injection, and TTC staining was used.
In the first group, infarct volume and CSSs were consistent with the extent of the occlusion of the angiographic vessels. An occlusion of the ACA, MCA, and posterior cerebral artery resulted in larger infarcts and higher stroke scores than occlusion of the ACA and MCA. In the second group, tamoxifen significantly reduced infarct size and improved clinical outcomes. In tamoxifen-treated animals, the mean infarct volume reduction was 40% (p < 0.05) and the mean CSS was significantly less than vehicle-treated animals (p < 0.001). There were significant correlations among MR imaging-determined volume, TTC-determined volume, and neurological clinical outcome (p < 0.05).
Using this endovascular model of stroke, the authors were able to consistently produce an infarction in the canines that was similar in scope to a carotid terminus occlusion in humans. Also, angiography could predict subsequent clinical course and infarct size. Tamoxifen was effective at significantly improving the canine neurological deficits and reducing the size of the stroke. This study took the first step in demonstrating the effectiveness of a promising human neuroprotectant in a large animal.

8 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stroke is one of the leading causes of death worldwide and the main reason for long-term disability. An appropriate animal model of stroke is urgently required for understanding the exact pathophysiological mechanism of stroke and testing any new therapeutic regimen. Our work aimed to establish a canine stroke model occluding the middle cerebral artery (MCA) and blocking the ipsilateral internal carotid artery (ICA), and to assess the infarct lesions by magnetic resonance imaging. The stroke model was generated by injecting two autologous clots into each MCA, followed by 2-h ipsilateral ICA blockade (ilICAB) using a catheter in 15 healthy adult beagles. Outcome measurements included 24-h and 7-day postocclusion T2-weighted imaging (T2WI)-based infarct volume calculation. In addition, pial collateral score, canine neurobehavioral score and histopathologic results were documented. Out of 15 dogs, 12 with successful MCA occlusion (MCAO) and ilICAB survived 7 days without complications or casualties and MCA were reperfused at 7 days after occlusion. High signal intensity in the basal ganglia and cerebral cortex on T2WI was initially observed in each dog at 6 h after the procedure. The mean percentage hemispherical infarct volume corrected for edema in all dogs on T2WI at 24 h after occlusion was 12.99±1.57%, and the degree of variability was 12.08%. The infarct volumes at 24 h after occlusion correlated with pial collateral scores and canine neurobehavioral scores well. This canine stroke model with combined MCAO and ilICAB reported here were proven to be highly feasible and reproducible.Laboratory Investigation advance online publication, 6 May 2013; doi:10.1038/labinvest.2013.65.
    Laboratory Investigation 05/2013; 93(7). DOI:10.1038/labinvest.2013.65 · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.
    PLoS ONE 10/2015; 10(10):e0140660. DOI:10.1371/journal.pone.0140660 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The extended time window and theoretic reduction in hemorrhage make mechanical strategies an attractive approach for the treatment of patients with ischemic stroke. However, a limited availability of suitable animal models of cerebrovascular thrombosis has hampered the study of novel endovascular interventions. The aim of the present study was to develop a new technique for site-specific placement of a thrombus in a canine model that would allow for the evaluation of mechanical thrombectomy and clot retrieval methods and the visualization of thrombus dislocation or fragmentation during angiographic manipulation. Methods: Angiography and embolization with a preformed thrombus were performed in 12 canines. Under fluoroscopic guidance, an embolism protection device (EPD) was anchored to the middle segment of the left vertebral artery (VA) via the left femoral arterial sheath. A preformed radiopaque clot was injected through the guide catheter into the left VA, via the contralateral femoral artery, proximal to the EPD. After 15 min of occlusion, the EPD was removed and persistent occlusion of the VA was documented angiographically. Results: Angiography performed during the observation period confirmed the persistence of VA occlusion in each case, and displacement of the radiopaque clots did not occur during the 3-hour observation period. The technique allowed selective embolization of targeted vessels without thrombus fragmentation. Conclusion: This study demonstrates, for the first time, a canine model of post-circulation embolism induced by autologous blood clot placement. This model can be rapidly formed and easily operated, and the site of thrombosis can be readily controlled.
    PLoS ONE 11/2015; 10(11):e0142251. DOI:10.1371/journal.pone.0142251 · 3.23 Impact Factor