Synthesis and molecular modelling of double-functionalised nucleosides with aromatic moieties in the 5'-(S)-position and minor groove interactions in DNA zipper structures.

Nucleic Acid Center, Department of Physics and Chemistry, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
Chemistry - A European Journal (Impact Factor: 5.93). 09/2010; 16(43):12904-19. DOI: 10.1002/chem.201001253
Source: PubMed

ABSTRACT A series of six double-functionalised nucleosides, in which aromatic moieties were inserted into the 5'-(S)-C-position, were synthesised and incorporated into DNA duplexes. The aromatic moieties were thymine-1-yl, phenyl, 1,2,3-triazol-1-yl, 1,2,3-triazol-4-yl, 4-(uracil-5-yl)-1,2,3-triazol-1-yl and 4-phenyl-1,2,3-triazol-1-yl. The DNA duplexes were studied with UV melting curves, CD spectroscopy and molecular modelling. The results showed that the aromatic moieties in some cases interact in the minor groove forming DNA zipper structures. The strongest specific interaction was found between two thymines or between a thymine and a phenyl group in a crossed (-3)-zipper motif (i.e., with two base pairs interspacing the modifications). Modelling revealed that the interaction is aromatic stacking across the minor groove. Also, the extended uracil-triazole moiety demonstrated zipper contacts in the minor groove as well as binding to the floor of the groove.

  • [Show abstract] [Hide abstract]
    ABSTRACT: (Cytosin-5-yl)ethynyl derivatives of pyrimidine and 7-deazaadenine 2-deoxyribonucleosides and nucleoside triphosphates (dNTPs) were prepared in one step by the aqueous Sonogashira coupling of unprotected halogenated nucleos(t)ides with 5-ethynylcytosine. The modified dNTPs were good substrates for DNA polymerases suitable for primer extension or PCR construction of DNA bearing acetylene-linked cytosine(s) in the major groove mimicking the flipped-out nucleotide.
    The Journal of Organic Chemistry 03/2011; 76(9):3457-62. · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis of three pyrene-modified nucleosides was accomplished using the CuAAC reaction. Hereby, pyrene is attached either to the 5'-position of thymidine or to the 2'-position of 2'-deoxyuridine through triazolemethylene linkers, or to the 2'-position of 2'-deoxyuridine through a more rigid triazole linker. The three nucleosides were incorporated into oligonucleotides, and these were combined in different duplexes and other secondary structures, which were analyzed by thermal stability and fluorescence studies. The three monomers were found to have different impacts on the nucleic acid complexes. Hence, pyrene attached to the 5'-position shows a tendency for intercalation into the duplex as indicated by a general decrease in fluorescence intensity followed by an increase in duplex thermal stability. Pyrene attached to the 2'-position through a rigid triazole linker also shows a tendency for intercalation but with decrease in duplex stability, whereas the pyrene attached to the 2'-position through a triazolemethylene linker is primarily situated in the minor groove as indicated by an increase in fluorescence but here in most cases leading to increase in duplex stability. All three pyrene nucleotides lead to thermal stabilization of bulged duplexes and three-way junctions. In some cases when two pyrenes were introduced into the core of these complexes, the formation or disappearance of a fluorescence excimer band can be used to indicate the hybridization process. Hereby these oligonucleotides can act as specific recognition probes.
    The Journal of Organic Chemistry 10/2012; · 4.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pyrene excimer fluorescence is efficiently regulated through formation of π-stacked aggregates between dialkynylpyrene (Y) and perylenediimide (E) residues located in the stem region of a molecular beacon (MB). The building blocks form organized, multichromophoric complexes in the native form. Hybridization to the target results in a conformational reorganization of the chromophores. The nature of the aggregates was investigated by changing the number of chromophores and natural base pairs in the beacon stem. The formation of different types of complexes (EYEY→YEY→EY) is revealed by characteristic spectroscopic changes. The data show that signal control is an intrinsic property of the interacting chromophores. The directed assembly of non-nucleosidic chromophores can be used for the generation of an on/off switch of a fluorescence signal. The concept may find applications in various types of light-based input/output systems.
    Organic & Biomolecular Chemistry 02/2011; 9(8):2628-33. · 3.49 Impact Factor