Article

Cryo-EM of macromolecular assemblies at near-atomic resolution.

National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
Nature Protocol (Impact Factor: 8.36). 09/2010; 5(10):1697-708. DOI: 10.1038/nprot.2010.126
Source: PubMed

ABSTRACT With single-particle electron cryomicroscopy (cryo-EM), it is possible to visualize large, macromolecular assemblies in near-native states. Although subnanometer resolutions have been routinely achieved for many specimens, state of the art cryo-EM has pushed to near-atomic (3.3-4.6 Å) resolutions. At these resolutions, it is now possible to construct reliable atomic models directly from the cryo-EM density map. In this study, we describe our recently developed protocols for performing the three-dimensional reconstruction and modeling of Mm-cpn, a group II chaperonin, determined to 4.3 Å resolution. This protocol, utilizing the software tools EMAN, Gorgon and Coot, can be adapted for use with nearly all specimens imaged with cryo-EM that target beyond 5 Å resolution. Additionally, the feature recognition and computational modeling tools can be applied to any near-atomic resolution density maps, including those from X-ray crystallography.

0 Followers
 · 
166 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: About 20 years ago, the first three-dimensional (3D) reconstructions at subnanometer (<10-Å ) resolution of an icosahedral virus assembly were obtained by cryogenic electron microscopy (cryo-EM) and single-particle analysis. Since then, thousands of structures have been determined to resolutions ranging from 30 Å to near atomic (<4 Å). Almost overnight, the recent development of direct electron detectors and the attendant improvement in analysis software have advanced the technology considerably. Near-atomic-resolution reconstructions can now be obtained, not only for megadalton macromolecular complexes or highly symmetrical assemblies but also for proteins of only a few hundred kilodaltons. We discuss the developments that led to this breakthrough in high-resolution structure determination by cryo-EM and point to challenges that lie ahead. Expected final online publication date for the Annual Review of Biochemistry Volume 84 is June 02, 2015. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Biochemistry 02/2015; 84(1). DOI:10.1146/annurev-biochem-060614-034226 · 26.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We introduce a general hybrid approach for determining the structures of supramolecular assemblies. Cryo-electron microscopy (cryo-EM) data define the overall envelope of the assembly and rigid-body orientation of the subunits while solid-state nuclear magnetic resonance (ssNMR) chemical shifts and distance constraints define the local secondary structure, protein fold and inter-subunit interactions. Finally, Rosetta structure calculations provide a general framework to integrate the different sources of structural information. Combining a 7.7-Å cryo-EM density map and 996 ssNMR distance constraints, the structure of the type-III secretion system needle of Shigella flexneri is determined to a precision of 0.4 Å. The calculated structures are cross-validated using an independent data set of 691 ssNMR constraints and scanning transmission electron microscopy measurements. The hybrid model resolves the conformation of the non-conserved N terminus, which occupies a protrusion in the cryo-EM density, and reveals conserved pore residues forming a continuous pattern of electrostatic interactions, thereby suggesting a mechanism for effector protein translocation.
    Nature Communications 09/2014; 5:4976. DOI:10.1038/ncomms5976 · 10.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
    Nature Communications 09/2014; 5:4808. DOI:10.1038/ncomms5808 · 10.74 Impact Factor