Sildenafil increases chemotherapeutic efficacy of doxorubicin in prostate cancer and ameliorates cardiac dysfunction.

Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University Pauley Heart Center, Richmond, VA 23298, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 09/2010; 107(42):18202-7. DOI: 10.1073/pnas.1006965107
Source: PubMed

ABSTRACT We have shown that the potent phosphodiesterase-5 (PDE-5) inhibitor sildenafil (Viagra) induces a powerful effect on reduction of infarct size following ischemia/reperfusion injury and improvement of left ventricular dysfunction in the failing heart after myocardial infarction or doxorubicin (DOX) treatment. In the present study, we further investigated the potential effects of sildenafil on improving antitumor efficacy of DOX in prostate cancer. Cotreatment with sildenafil enhanced DOX-induced apoptosis in PC-3 and DU145 prostate cancer cells, which was mediated by enhanced generation of reactive oxygen species, up-regulation of caspase-3 and caspase-9 activities, reduced expression of Bcl-xL, and phosphorylation of Bad. Overexpression of Bcl-xL or dominant negative caspase 9 attenuated the synergistic effect of sildenafil and DOX on prostate cancer cell killing. Furthermore, treatment with sildenafil and DOX in mice bearing prostate tumor xenografts resulted in significant inhibition of tumor growth. The reduced tumor size was associated with amplified apoptotic cell death and increased expression of activated caspase 3. Doppler echocardiography showed that sildenafil treatment ameliorated DOX-induced left ventricular dysfunction. In conclusion, these results provide provocative evidence that sildenafil is both a powerful sensitizer of DOX-induced killing of prostate cancer while providing concurrent cardioprotective benefit.

  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: Phosphodiesterases (PDEs) play a role in controlling cyclic nucleotide action, including cyclic guanosine monophosphate (cGMP). Previous studies have ascribed a protective role of cGMP signaling on hypoxia-mediated cancer progression. Herein, we determine their potential role in hypoxia-mediated chemoresistance and immune escape. MATERIALS AND METHODS: Phosphodiesterase assays were used to measure PDE activity in prostate cancer cell lines (DU145, PC3). Immunoblots were performed to determine the presence of PDEs in human prostate tissue samples. The effect of PDE inhibition on hypoxia-induced chemoresistance (compared to normoxic controls, 20% O(2)) was determined using clonogenic assays. Flow cytometry was used to determine the effects of PDE inhibition on surface MHC class I-related chain A (MICA), a natural killer (NK) cell-activating ligand. A mouse model was used to evaluate the in vivo effects of PDE inhibition on the growth of human prostate cancer cells. RESULTS: PDE5 and PDE11 were the most prominent PDEs in the cell lines, representing between 86 and 95% of the total cGMP-specific PDE activity. Treatment of DU-145 cells with a PDE inhibitor significantly reduced the hypoxia-associated acquisition of resistance to doxorubicin, with a mean 51% reduction in surviving fraction compared to controls (p < 0.001, ANOVA). As well, PDE inhibition completely reversed (p = 0.02, ANOVA) hypoxia-induced shedding of the immune stimulatory molecule, MICA, and attenuated the growth of human prostate tumor xenografts in an NK cell-competent murine model (p = 0.03, Wilcoxon, Mann-Whitney). CONCLUSIONS: These results suggest a rationale for future studies on the potential therapeutic applications of PDE inhibitors in men with prostate cancer.
    World Journal of Urology 03/2012; · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that enhanced production of reactive oxygen species (ROS) leads to oxidative stress observed in atherosclerosis and that ROS can also cause damage in cellular macromolecules, including DNA. Considering previous report that sildenafil, an inhibitor of phosphodiesterase 5 (PDE5), has antioxidant effects, in the present study we evaluated the effect of this drug on genotoxicity of blood mononuclear cells (MNC) and liver cells from atherosclerotic apolipoprotein E knockout mice (apoE-/-). ROS production in MNC was evaluated by flow cytometry with the fluorescent dye dihydroethidium (DHE), a method that has been used to quantify the production of superoxide anion, and DNA damage was evaluated in both MNC and liver cells using the alkaline comet assay. Sildenafil-administered apoE-/- mice were compared with strain-matched mice administered with vehicle and with C57BL/6 wild-type (WT) mice. MNC from apoE-/- vehicle exhibited a 2-fold increase in production of superoxide anion in comparison with WT. In contrast, sildenafil-administered apoE-/- mice showed superoxide anion levels similar to those observed in WT mice. Similarly, MNC and liver cells from apoE-/- vehicle mice showed a 4-fold and 2-fold augmented DNA fragmentation compared with WT, respectively, and sildenafil-administered apoE-/- mice exhibited minimal DNA damage in those cells similar to WT mice. ApoE-/- mice chronically administered with sildenafil exhibited reduced levels of superoxide anion in MNC and less DNA fragmentation in MNC and liver cells, which are biomarkers of genotoxicity. Therefore, sildenafil may offer a new perspective to the use of PDE5 inhibitors to protect against DNA damage, in cells involved in the inflammatory and dyslipidemic processes that accompany atherosclerosis.
    Lipids in Health and Disease 08/2013; 12(1):128. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anti-cancer drug doxorubicin is associated with an increased risk of cardiac damage and dysfunction, which can be acute as well as chronic. Fibroblast growth factor 2 (FGF-2) provides cardioprotection from ischemia-reperfusion injury but its effects on doxorubicin-induced damage are not known. We investigated the acute effects of doxorubicin administered in the absence and presence of FGF-2 pre-treatment, on isolated mouse perfused heart function over a period of 120 min. Doxorubicin elicited a significant decrease in left ventricular developed pressure (DP) at 30 min that persisted throughout the study. No effect on lactate dehydrogenase levels was detected in the perfusate, suggesting a lack of significant plasma membrane damage. FGF-2 pre-treatment lessened the deleterious effect of doxorubicin on DP significantly, and this beneficial effect of FGF-2 was blunted by protein kinase C inhibition with chelerythrine. Pre-treatment with a non-mitogenic FGF-2 mutant or FGF-16 also protected against a doxorubicin-induced decrease in DP. FGF-16 as well as FGF-2 pre-treatment elicited a small and transient negative inotropic effect. In conclusion, FGF-2 and FGF-16 increase resistance to acute doxorubicin-induced cardiac dysfunction, and protein kinase C activation is implicated in this response.
    Cardiovascular toxicology 02/2013; · 2.56 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014