On the cardinality of sumsets in torsion-free groups

Bulletin of the London Mathematical Society (Impact Factor: 0.7). 09/2010; DOI: 10.1112/blms/bds032
Source: arXiv

ABSTRACT Let $A, B$ be finite subsets of a torsion-free group $G$. We prove that for every positive integer $k$ there is a $c(k)$ such that if $|B|\ge c(k)$ then the inequality $|AB|\ge |A|+|B|+k$ holds unless a left translate of $A$ is contained in a cyclic subgroup. We obtain $c(k)<c_0k^{6}$ for arbitrary torsion-free groups, and $c(k)<c_0k^{3}$ for groups with the unique product property, where $c_0$ is an absolute constant. We give examples to show that $c(k)$ is at least quadratic in $k$.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bowditch introduced the notion of diffuse groups as a geometric variation of the unique product property. We elaborate on various examples and non-examples, keeping the geometric point of view from Bowditch's paper. In particular, we discuss fundamental groups of flat and hyperbolic manifolds. The appendix settles an open question by providing an example of a group which is diffuse but not left-orderable.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given an infinite group G, we consider the finitely additive invariant measure defined on finite unions of cosets of finite index subgroups. We show that this shares many properties with the size of subsets of a finite group, for instance we can obtain equivalent results on the Ruzsa distance and product free sets. In particular, if G has infinitely many finite index subgroups, then it has subsets S of measure arbitrarily close to 1/2 with square S2 having measure less than 1. We also examine properties of the Ruzsa distance on the set of finite index subgroups of an infinite group, whereupon it becomes a genuine metric.
    Algebra Colloquium 06/2011; 22(02). DOI:10.1142/S1005386715000292 · 0.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We give an infinite family of torsion-free groups that do not satisfy the unique product property. For these examples, we also show that each group contains arbitrarily large sets whose square has no uniquely represented element.
    Journal of Group Theory 01/2013; 3(3). DOI:10.1515/jgt-2013-0051 · 0.35 Impact Factor

Preview (2 Sources)

Available from