Article

Opposing Putative Roles for Canonical and Noncanonical NFκB Signaling on the Survival, Proliferation, and Differentiation Potential of Human Embryonic Stem Cells

Institute of Human Genetics, International Centre for Life, Newcastle University, Newcastle Upon Tyne, United Kingdom.
Stem Cells (Impact Factor: 7.7). 11/2010; 28(11):1970-80. DOI: 10.1002/stem.528
Source: PubMed

ABSTRACT The canonical and noncanonical NFκB signaling pathways regulate a variety of cellular activities; however, their functions in human embryonic stem cells (hESCs) have not been fully investigated. Expression studies during hESC differentiation indicated a significant increase in the expression of two key components of the canonical NFκB pathway (p50 and Ser529 phosphorylated form of p65) as well as a significant reduction in expression of key components of the noncanonical NFκB pathway [v-rel reticuloendotheliosis viral oncogene homolog B (RELB), p52, NIK]. Inhibition of canonical NFκB resulted in hESC apoptosis, changes in cell cycle distribution, and reduced hESC proliferation. In addition, inhibition of canonical NFκB was associated with significant changes in NANOG and OCT4 expression, suppression of differentiation toward all primitive extraembryonic and embryonic lineages with the exception of primitive ectoderm and ectodermal lineages. Inhibition of noncanonical NFκB via small interfering RNA-mediated downregulation of RELB resulted in reduced hESC proliferation and opposite changes to expression of key differentiation lineage markers genes when compared with downregulation of canonical NF-κB. Chromatin immunoprecipitation assays indicated binding of p65 and RELB to regulatory regions of key differentiation marker genes suggesting a direct transcriptional role for both branches of this pathway in hESC. These findings coupled with opposing trends in expression of key components during hESC differentiation, suggests a fine and opposing balance between the two branches of NFκB signaling pathways and their involvement in two distinct processes: the canonical pathway regulating hESC differentiation and the noncanonical pathway maintaining hESC pluripotency.

Full-text

Available from: Stuart P Atkinson, Aug 27, 2014
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD30 (TNFRSF8), a tumor necrosis factor receptor family protein, and CD30 variant (CD30v), a ligand-independent form encoding only the cytoplasmic signaling domain, are concurrently overexpressed in transformed human embryonic stem cells (hESCs) or hESCs cultured in the presence of ascorbate. CD30 and CD30v are thought to increase hESC survival and proliferation through NFκB activation, but how this occurs is largely unknown. Here we demonstrate that hESCs that endogenously express CD30v and hESCs that artificially overexpress CD30v, exhibit increased ERK phosphorylation levels, activation of the canonical NFκB pathway, down-regulation of the non-canonical NFκB pathway, and reduced expression of the full-length CD30 protein. We further find that CD30v, surprisingly, resides predominantly in the nucleus of hESC. We demonstrate that alanine substitution of a single threonine residue at position 61 (T61) in CD30v abrogates CD30v-mediated NFκB activation, CD30v-mediated resistance to apoptosis and CD30v-enhanced proliferation, as well as restores normal G2/M-checkpoint arrest upon H2O2 treatment while maintaining its unexpected subcellular distribution. Using an affinity purification strategy and LC-MS, we identified TRAF2 as the predominant protein that interacts with WT CD30v but not the T61A-mutant form in hESCs. The identification of Thr61 as a critical residue for TRAF2 recruitment and canonical NFκB signaling by CD30v reveals the substantial contribution this molecule makes to overall NFκB activity, cell cycle changes and survival in hESCs. © 2015 by The American Society for Cell Biology.
    Molecular Biology of the Cell 01/2015; 26(5). DOI:10.1091/mbc.E14-08-1290 · 4.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human induced pluripotent stem cells (hiPSCs) have been derived from various somatic cell types. Granulosa cells, a group of cells which surround oocytes and are obtained from the (normally discarded) retrieved egg follicles of women undergoing infertility treatment, are a possible cell source for induced pluripotent stem cell (iPSC) generation. Here, we explored the possibility of using human granulosa cells as a donor cell type for iPSC reprogramming, and compared granulosa cell-derived iPSCs (iGRAs) with those derived from other cell sources, to determine the potential ability of iGRA differentiation. Granulosa cells were collected from egg follicles retrieved from women undergoing infertility treatment. After short-term culture, the granulosa cells derived from different patients were mixed in culture, and infected with retroviruses encoding reprogramming factors. The resulting iPSC clones were selected and subjected to microsatellite DNA analysis to determine their parental origin. IGRAs were subjected to RT-PCR, immunofluorescence staining, and in vitro and in vivo differentiation assays to further establish their pluripotent characteristics. Microsatellite DNA analysis was used to demonstrate that hiPSCs with different parental origins can be simultaneously reprogrammed by retroviral transfection of a mixed human granulosa cell population obtained from multiple individuals. The iGRAs resemble human embryonic stem cells (hESCs) in many respects, including morphological traits, growth requirements, gene and marker expression profiles, and in vitro and in vivo developmental propensities. We also demonstrate that the iGRAs express low levels of NLRP2, and differentiating iGRAs possess a biased differentiation potential toward the trophoblastic lineage. Although NLRP2 knockdown in hESCs promotes trophoblastic differentiation of differentiating hESCs, it does not result in exit from pluripotency. These results imply that NLRP2 may play a role in regulating the trophoblastic differentiation of human pluripotent stem cells. These findings provide a means of generating iPSCs from multiple granulosa cell populations with different parental origins. The ability to generate iPSCs from granulosa cells not only enables modeling of infertility-associated disease, but also provides a means of identifying potential clinical interventions through iPSC-based drug screening.
    Stem Cell Research & Therapy 02/2015; 6(1):14. DOI:10.1186/s13287-015-0005-5 · 4.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NF-kappaB is involved in many biological processes including proliferation, survival, and differentiation. Because human embryonic stem (ES) cells have the potential to differentiate to various lineages, understanding mechanisms involved in stemness and lineage differentiation is an important issue. We investigated expression of NF-kappaB in the human ES cell lines SNUhES3 and MizhES4 and found that expression of NF-kappaB mRNA and protein in these two cell lines was significantly lower compared to those of other adult cell lines. However, when SNUhES3 cells were induced to differentiate by retinoic acid, expression levels of NF-kappaB significantly increased compared to undifferentiated SNUhES3 cells. As the components of tumor necrosis factor-alpha (TNF-alpha) signaling are expressed comparably in undifferentiated and differentiated SNUhES3 cells, we examined the responsiveness of SNUhES3 cells to treatment with TNF-alpha, an agonist of NF-kappaB signaling. Nuclear localization of NF-kappaB in response to TNF-alpha was evident in differentiated, but not undifferentiated, SNUhES3 cells. In agreement with this observation, induction of interleukin-8 (IL-8) in response to TNF-alpha was seen only in differentiated SNUhES3 cells. On the basis of an IkappaB kinase (IKK) inhibitor study, expression of IL-8 induced by TNF-alpha was dependent on NF-kappaB activity. Taken together, our results suggest that expression and activity of NF-kappaB is comparatively low in undifferentiated human ES cells, but increases during differentiation of the ES cells.
    Stem Cells and Development 09/2007; 16(4):615-23. DOI:10.1089/scd.2007.0014 · 4.20 Impact Factor