Article

Stereotactic body radiation therapy: The report of AAPM Task Group 101

University of Virginia Health System, Charlottesville, Virginia 22908, USA.
Medical Physics (Impact Factor: 3.01). 08/2010; 37(8):4078-101. DOI: 10.1118/1.3438081
Source: PubMed

ABSTRACT Task Group 101 of the AAPM has prepared this report for medical physicists, clinicians, and therapists in order to outline the best practice guidelines for the external-beam radiation therapy technique referred to as stereotactic body radiation therapy (SBRT). The task group report includes a review of the literature to identify reported clinical findings and expected outcomes for this treatment modality. Information is provided for establishing a SBRT program, including protocols, equipment, resources, and QA procedures. Additionally, suggestions for developing consistent documentation for prescribing, reporting, and recording SBRT treatment delivery is provided.

1 Follower
 · 
421 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since decades the gold standard for treatment of early stage non-small cell lung cancer (NSCLC) is surgical lobectomy plus mediastinal lymph node dissection. Patients in worse health status are treated with sublobar resection or radiation treatment. With development of stereotactic-body-radiotherapy (SBRT), outcome of patients treated with radiation was substantially improved. Comparison of SBRT and surgical techniques is difficult due to the lack of randomized trials. However, all available evidence in form of case control studies of population based studies show equivalence between sublobar resection and SBRT indicating that SBRT-when performed by a trained and experienced team-should be offered to all high-risk surgical patients. For patients not willing to take the risk of lobectomy and therefore refusing surgery, SBRT is an excellent treatment option.
    08/2014; 3(4):212-24. DOI:10.3978/j.issn.2218-6751.2014.08.06
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this work was to develop a comprehensive knowledge-based methodology for predicting achievable dose-volume histograms (DVHs) and highly precise DVH-based quality metrics (QMs) in stereotactic radiosurgery/radiotherapy (SRS/SRT) plans. Accurate QM estimation can identify suboptimal treatment plans and provide target optimization objectives to standardize and improve treatment planning. Correlating observed dose as it relates to the geometric relationship of organs-at-risk (OARs) to planning target volumes (PTVs) yields mathematical models to predict achievable DVHs. In SRS, DVH-based QMs such as brain V10Gy (volume receiving 10 Gy or more), gradient measure (GM), and conformity index (CI) are used to evaluate plan quality. This study encompasses 223 linear accelerator-based SRS/SRT treatment plans (SRS plans) using volumetric-modulated arc therapy (VMAT), representing 95% of the institution's VMAT radiosurgery load from the past four and a half years. Unfiltered models that use all available plans for the model training were built for each category with a stratification scheme based on target and OAR characteristics determined emergently through initial modeling process. Model predictive accuracy is measured by the mean and standard deviation of the difference between clinical and predicted QMs, δQM = QMclin - QMpred, and a coefficient of determination, R(2). For categories with a large number of plans, refined models are constructed by automatic elimination of suspected suboptimal plans from the training set. Using the refined model as a presumed achievable standard, potentially suboptimal plans are identified. Predictions of QM improvement are validated via standardized replanning of 20 suspected suboptimal plans based on dosimetric predictions. The significance of the QM improvement is evaluated using the Wilcoxon signed rank test. The most accurate predictions are obtained when plans are stratified based on proximity to OARs and their PTV volume sizes. Volumes are categorized into small (VPTV < 2 cm(3)), medium (2 cm(3) < VPTV < 25 cm(3)), and large (25 cm(3) < VPTV). The unfiltered models demonstrate the ability to predict GMs to ∼1 mm and fractional brain V10Gy to ∼25% for plans with large VPTV and critical OAR involvements. Increased accuracy and precision of QM predictions are obtained when high quality plans are selected for the model training. For the small and medium VPTV plans without critical OAR involvement, predictive ability was evaluated using the refined model. For training plans, the model predicted GM to an accuracy of 0.2 ± 0.3 mm and fractional brain V10Gy to 0.04 ± 0.12, suggesting highly accurate predictive ability. For excluded plans, the average δGM was 1.1 mm and fractional brain V10Gy was 0.20. These δQM are significantly greater than those of the model training plans (p < 0.001). For CI, predictions are close to clinical values and no significant difference was observed between the training and excluded plans (p = 0.19). Twenty outliers with δGM > 1.35 mm were identified as potentially suboptimal, and replanning these cases using predicted target objectives demonstrates significant improvements on QMs: on average, 1.1 mm reduction in GM (p < 0.001) and 23% reduction in brain V10Gy (p < 0.001). After replanning, the difference of δGM distribution between the 20 replans and the refined model training plans was marginal. The results demonstrate the ability to predict SRS QMs precisely and to identify suboptimal plans. Furthermore, the knowledge-based DVH predictions were directly used as target optimization objectives and allowed a standardized planning process that bettered the clinically approved plans. Full clinical application of this methodology can improve consistency of SRS plan quality in a wide range of PTV volume and proximity to OARs and facilitate automated treatment planning for this critical treatment site.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. To investigate the feasibility of an automated framework for estimating the lung tumor locations for tumor-based patient positioning with megavolt-cone-beam computed tomography (MV-CBCT) during stereotactic body radiotherapy (SBRT). Methods. A lung screening phantom and ten lung cancer cases with solid lung tumors, who were treated with SBRT, were employed to this study. The locations of tumors in MV-CBCT images were estimated using a tumor-template matching technique between a tumor template and the MV-CBCT. Tumor templates were produced by cropping the gross tumor volume (GTV) regions, which were enhanced by a Sobel filter or a blob structure enhancement (BSE) filter. Reference tumor locations (grand truth) were determined based on a consensus between a radiation oncologist and a medical physicist. Results. According to the results of the phantom study, the average Euclidean distances of the location errors in the original, Sobel-filtered, and BSE-filtered images were 2.0 ± 4.1 mm, 12.8 ± 9.4 mm, and 0.4 ± 0.5 mm, respectively. For clinical cases, these were 3.4 ± 7.1 mm, 7.2 ± 11.6 mm, and 1.6 ± 1.2 mm, respectively. Conclusion. The feasibility study suggests that our proposed framework based on the BSE filter may be a useful tool for tumor-based patient positioning in SBRT.
    BioMed Research International 01/2015; 2015:653974. DOI:10.1155/2015/653974 · 2.71 Impact Factor

Full-text (2 Sources)

Download
96 Downloads
Available from
May 22, 2014