Article

Gout: epitome of painful arthritis.

St. Luke's-Roosevelt Hospital Center, Columbia University College of Physicians and Surgeons, New York, NY 10025, USA.
Metabolism: clinical and experimental (Impact Factor: 3.1). 10/2010; 59 Suppl 1:S32-6. DOI: 10.1016/j.metabol.2010.07.009
Source: PubMed

ABSTRACT Arthritic pain and disability are at or near the top of the list of reasons adult patients seek medical attention. At least 47.8 million US residents have arthritis. In Europe, the magnitude of the problem is similar, affecting 8 million in the United Kingdom and 108 million across the continent. Osteoarthritis is by far the most common form of arthritis. In a regional UK study, nearly half of adults 50 years or older reported some form of osteoarthritic knee pain over a 1-year period. Among the arthritides, gout is notable for the agonizing nature and unique pathogenesis of the pain it generates. Gout is the most common cause of inflammatory arthritis among men and postmenopausal women. Because of the atypical nature of some of its clinical manifestations, gout can present serious diagnostic challenges for practicing physicians. In recent years, knowledge about gout's pathogenesis, pathophysiology, and differential diagnosis has advanced on a broad front. Genetic variants within a newly identified transport gene, SLC2A9, have been associated with a low fractional excretion of uric acid and the presence of gout in several population samples. The SLC2A9 gene encodes glucose transporter 9-a unique hexose and high-capacity urate transporter. In addition, human ATP-binding cassette, subfamily G2 (ABCG2), encoded by the ABCG2 gene, has been found to mediate renal urate secretion. Introduction of a mutation encoded in a model system by a common single nucleotide polymorphism, rs2231142, resulted in a 53% reduction in urate transport rates compared with wild-type ABCG2. Based on a large population study, it has been estimated that at least 10% of all gout cases in white persons may be attributable to this single nucleotide polymorphism causal genetic variant. Of the various categories of arthritis, the crystal-induced arthropathies, gout and pseudogout, are manifested by acute inflammation and tissue damage arising from deposition in joints and periarticular tissues of monosodium urate (MSU), calcium pyrophosphate dehydrate, or basic calcium phosphate crystals. The innate immune system rapidly detects invading pathogenic microbes and nonmicrobial "danger signals" such as MSU crystals. When these crystals are deposited in synovial tissues, NLR proteins (NOD-like receptors) form multiprotein complexes known as inflammasomes that trigger secretion of inflammation-producing cytokines like interleukin-1β and interleukin-18. Usually, gout can be diagnosed by medical history, physical examination, and presence of hyperuricemia (urate >416 μmol/L). However, a urate concentration less than 416 does not by itself rule out gout. Confirmation of the diagnosis by identification of typical MSU crystals in aspirated synovial fluid is definitive. Analysis of joint fluid is mandatory to rule out septic arthritis, which can rapidly become lethal. Because of its special ability to identify and quantitate urate deposits in peripheral tissues, dual-energy computed tomography should prove valuable in the differential diagnosis of gout. Gout mimics a variety of illnesses; for example, spinal gout may masquerade as metastatic cancer, epidural abscess, and nerve compression syndrome.

0 Bookmarks
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psoriatic arthritis (PsA) is a chronic, systemic inflammatory disease. Up to 40 % of patients with psoriasis will go on to develop PsA, usually within 5-10 years of cutaneous disease onset. Both conditions share common pathogenic mechanisms involving genetic and environmental factors. Because psoriasis is typically present for years before PsA-related joint symptoms emerge, dermatologists are in a unique position to detect PsA earlier in the disease process through regular, routine screening of psoriasis patients. Distinguishing clinical features of PsA include co-occurrence of psoriatic skin lesions and nail dystrophy, as well as dactylitis and enthesitis. Patients with PsA are usually seronegative for rheumatoid factor, and radiographs may reveal unique features such as juxta-articular new bone formation and pencil-in-cup deformity. Early treatment of PsA with disease-modifying anti-rheumatic drugs has the potential to slow disease progression and maintain patient quality of life. Optimally, a single therapeutic agent will control both the skin and joint psoriatic symptoms. A number of traditional treatments used to manage psoriasis, such as methotrexate and cyclosporine, are also effective for PsA, but these agents are often inadequately effective, temporary in benefit and associated with significant safety concerns. Biologic anti-tumour necrosis factor agents, such as etanercept, infliximab and adalimumab, are effective for treating patients who have both psoriasis and PsA. However, a substantial number of patients may lose efficacy, have adverse effects or find intravenous or subcutaneous administration inconvenient. Emerging oral treatments, including phosphodiesterase 4 inhibitors, such as apremilast, and new biologics targeting interleukin-17, such as secukinumab, brodalumab and ixekizumab, have shown encouraging clinical results in the treatment of psoriasis and/or PsA. Active and regular collaboration of dermatologists with rheumatologists in managing patients who have psoriasis and PsA is likely to yield more optimal control of psoriatic dermal and joint symptoms, and improve long-term patient outcomes.
    Drugs 02/2014; · 4.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We studied the tissue growth dynamics of tissue-engineered cartilage at an early growth stage after cell seeding for four weeks using sodium triple-quantum coherence NMR spectroscopy. The following tissue-engineering constructs were studied: 1) bovine chondrocytes cultured in alginate beads; 2) bovine chondrocytes cultured as pellets (scaffold-free chondrocyte pellets); and 3) human marrow stromal cells (HMSCs) seeded in collagen/chitosan based biomimetic scaffolds. We found that the sodium triple-quantum coherence spectroscopy could differentiate between different tissue-engineered constructs and native tissues based on the fast and slow components of relaxation rate as well as on the average quadrupolar coupling. Both fast (T(f) ) and slow (T(s) ) relaxation times were found to be longer in chondrocyte pellets and biomimetic scaffolds compared to chondrocytes suspended in alginate beads and human articular cartilage tissues. In all cases, it was found that relaxation rates and motion of sodium ions measured from correlation times were dependent on the amount of macromolecules, high cell density and anisotropy of the cartilage tissue-engineered constructs. Average quadrupolar couplings were found to be lower in the engineered tissue compared to native tissue, presumably due to the lack of order in collagen accumulated in the engineered tissue. These results support the use of sodium triple-quantum coherence spectroscopy as a tool to investigate anisotropy and growth dynamics of cartilage tissue-engineered constructs in a simple and reliable way. Copyright © 2013 John Wiley & Sons, Ltd.
    NMR in Biomedicine 02/2013; · 3.45 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is widely recognized that purinergic signalling, extracellular nucleotides acting at purinergic receptors, is the most primitive and ubiquitous signalling system participating in numerous biological processes in almost all tissue types. The P2 receptors, including P2X and P2Y purinoceptor subtypes, have been proposed to play important roles in the musculoskeletal systems since the early 1990s. During the past five years, significant progress in this field has been made; this review will summarize these most recent developments and highlight the pharmaceutical potential from these findings.
    Current Opinion in Pharmacology 05/2014; 16C:122-126. · 5.44 Impact Factor