The gamma-ray binary LS 5039: mass and orbit constraints from MOST observations

Monthly Notices of the Royal Astronomical Society (Impact Factor: 5.52). 09/2010; DOI: 10.1111/j.1365-2966.2010.17757.x
Source: arXiv

ABSTRACT The results of a coordinated space-based photometric and ground-based spectroscopic observing campaign on the enigmatic gamma-ray binary LS 5039 are reported. Sixteen days of observations from the MOST satellite have been combined with high-resolution optical echelle spectroscopy from the 2.3m ANU Telescope in Siding Spring, Australia. These observations were used to measure the orbital parameters of the binary and to study the properties of stellar wind from the O primary. We found that any broad-band optical photometric variability at the orbital period is below the 2 mmag level, supporting the scenario that the orbital eccentricity of the system is near the 0.24 +/- 0.08 value implied by our spectroscopy, which is lower than values previously obtained by other workers. The low amplitude optical variability also implies the component masses are at the higher end of estimates based on the primary's O6.5V((f)) spectral type with a primary mass of ~26 solar masses and a mass for the compact star of at least 1.8 solar masses. The mass loss rate from the O primary was determined to be 3.7E-7 to 4.8E-7 solar masses per year. Comment: Accepted for MNRAS 2010 September 22

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-ray binaries allow us to study physical processes such as particle acceleration up to TeV energies and VHE gamma-ray emission and absorption with changing geometrical configurations on a periodic basis. These sources produce outflows of radio-emitting particles whose structure can be imaged with VLBI. LS 5039 is a gamma-ray binary that has shown variable VLBI structures in the past. We aim to characterise the radio morphological changes of LS 5039 and discriminate if they are either repeatable or erratic. We observed LS 5039 with the VLBA at 5 GHz during five consecutive days to cover the 3.9-day orbit and an extra day to disentangle between orbital or secular variability. We also compiled the available high-resolution radio observations of the source to study its morphological variability at different orbital phases. We used a simple model to interpret the obtained images. The new observations show that the morphology of LS 5039 up to projected distances of 10 milliarcseconds changes in 24 h. The observed radio morphological changes display a periodic orbital modulation. Multifrequency and multiepoch VLBI observations confirm that the morphological periodicity is stable on timescales of years. Using a simple model we show that the observed behaviour is compatible with the presence of a young non-accreting pulsar with an outflow behind it. The morphology is reproduced for inclinations of the orbit of 60-75 deg. For masses of the companion star in the range 20-50 Msun, this range of inclinations implies a mass of the compact object of 1.3-2.7 Msun. The periodic orbital modulation of the radio morphology of LS 5039 suggests that all gamma-ray binaries are expected to show a similar behaviour. The changes in the radio structure of LS 5039 are compatible with the presence of a young non-accreting neutron star, which suggests that the known gamma-ray binaries contain young pulsars.
    Astronomy and Astrophysics 09/2012; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We propose a model for the gamma-ray binary LS 5039 in which the X-ray emission is due to the inverse Compton (IC) process instead of the synchrotron radiation. Although the synchrotron model has been discussed in previous studies, it requires a strong magnetic field which leads to a severe suppression of the TeV gamma-ray flux in conflict with H.E.S.S. observations. In this paper, we calculate the IC emission by low energy electrons (\gamma_e \lesssim 10^3) in the Thomson regime. We find that IC emission of the low energy electrons can explain the X-ray flux and spectrum observed with Suzaku if the minimum Lorentz factor of injected electrons \gamma_min is around 10^3. In addition, we show that the Suzaku light curve is well reproduced if \gamma_min varies in proportion to the Fermi flux when the distribution function of injected electrons at higher energies is fixed. We conclude that the emission from LS 5039 is well explained by the model with the IC emission from electrons whose injection properties are dependent on the orbital phase. Since the X-ray flux is primarily determined by the total number of cooling electrons, this conclusion is rather robust, although some mismatches between the model and observations at the GeV band remain in the present formulation.
    The Astrophysical Journal 11/2012; 761(2). · 6.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high and very-high energy spectrum of gamma-ray binaries has become a challenge for all theoretical explanations since the detection of powerful, persistent GeV emission from LS 5039 and LS I +61 303 by Fermi/LAT. The spectral cutoff at a few GeV indicates that the GeV component and the fainter, hard TeV emission above 100 GeV are not directly related. We explore the possible origins of these two emission components in the framework of a young, non-accreting pulsar orbiting the massive star, and initiating the non-thermal emission through the interaction of the stellar and pulsar winds. The pulsar/stellar wind interaction in a compact orbit binary gives rise to two potential locations for particle acceleration: the shocks at the head-on collision of the winds and the termination shock caused by Coriolis forces on scales larger than the binary separation. We explore the suitability of these two locations to host the GeV and TeV emitters, respectively, through the study of their non-thermal emission along the orbit. We focus on the application of this model to LS 5039 given its well determined stellar wind with respect to other gamma-ray binaries. The application of the proposed model to LS 5039 indicates that these two potential emitter locations provide the necessary conditions for reproduction of the two-component high-energy gamma-ray spectrum of LS 5039. In addition, the ambient postshock conditions required at each of the locations are consistent with recent hydrodynamical simulations. The scenario based on the interaction of the stellar and pulsar winds is compatible with the GeV and TeV emission observed from gamma-ray binaries with unknown compact objects, such as LS 5039 and LS I +61 303.
    Astronomy and Astrophysics 12/2012; · 5.08 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014