Age-related changes of regional pulse wave velocity in the descending aorta using Fourier velocity encoded M-mode

Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom.
Magnetic Resonance in Medicine (Impact Factor: 3.4). 01/2011; 65(1):261-8. DOI: 10.1002/mrm.22590
Source: PubMed

ABSTRACT Aortic pulse wave velocity (PWV) is an independent determinant of cardiovascular risk. Although aortic stiffening with age is well documented, the interaction between aging and regional aortic PWV is still a debated question. We measured global and regional PWV in the descending aorta of 56 healthy subjects aged 25-76 years using a one-dimensional, interleaved, Fourier velocity encoded pulse sequence with cylindrical excitation. Repeatability across two magnetic resonance examinations (n = 19) and accuracy against intravascular pressure measurements (n = 4) were assessed. The global PWV was found to increase nonlinearly with age. The thoracic aorta was found to stiffen the most with age (PWV [thoracic, 20-40 years] = 4.7 ± 1.1 m/s; PWV [thoracic, 60-80 years] = 7.9 ± 1.5 m/s), followed by the mid- (PWV [mid-abdominal, 20-40 years] = 4.9 ± 1.3 m/s; PWV [mid-abdominal, 60-80 years] = 7.4 ± 1.9 m/s) and distal abdominal aorta (PWV [distal abdominal, 20-40 years] = 4.8 ± 1.4 m/s; PWV [distal abdominal, 60-80 years] = 5.7 ± 1.4 m/s). Good agreement was found between repeated magnetic resonance measurements and between magnetic resonance PWVs and the gold-standard. Fourier velocity encoded M-mode allowed to measure global and regional PWV in the descending aorta. There was a preferential stiffening of the thoracic aorta with age, which may be due to progressive fragmentation of elastin fibers in this region.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: The objective of this study was to compare multiple methods for estimation of PWV from 4D flow MRI velocity data and to investigate if 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time is sufficient to discern age-related regional differences in PWV. Methods: 4D flow MRI velocity data were acquired in 8 young and Solder (age: 23 +/- 2 vs. 58 +/- 2 years old) normal volunteers. Travel-time and travel-distance were measured throughout the aorta and piecewise linear regression was used to measure global PWV in the descending aorta and regional PWV in three equally sized segments between the top of the aortic arch and the renal arteries. Six different methods for extracting travel-time were compared. Results: Methods for estimation of travel-time that use information about the whole flow waveform systematically overestimate PWV when compared to methods restricted to the upslope-portion of the waveforms (p < 0.05). In terms of regional PWV, a significant interaction was found between age and location (p < 0.05). The age-related differences in regional PWV were greater in the proximal compared to distal descending aorta. Conclusion: Care must be taken as different classes of methods for the estimation of travel-time produce different results. 4D flow MRI-based PWV estimation with piecewise linear regression modeling of travel-distance vs. travel time can discern age-related differences in regional PWV well in line with previously reported data.
    Magnetic Resonance Imaging 08/2014; 32(10). DOI:10.1016/j.mri.2014.08.021 · 2.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulse-wave velocity (PWV) is an important index for diagnosing cardiovascular diseases. The pulse wave is volumetric change induced by heartbeat or inflowing blood, and significantly depends on the propagating path and stiffness of the artery. In this study, PWV of the propagating wave was visualized using spatial compound imaging with high temporal resolution. The frame rate was 1000 Hz, or a time interval of 1ms. Subjects were four young healthy males and one young healthy female (n = 5, age: 23.8 ± 1.17 years old), and the measurement area was the right common carotid artery. PWVs in four phases (the four phases of heart valve opening and closing) were investigated during a cardiac cycle. In phase I, the heart pulsates. In phase II, the tricuspid and mitral valves close, and the aortic and pulmonic valves open. In phase III, the tricuspid and mitral valves open, and the aortic and pulmonic valves close. In phase IV, the propagating wave is reflected. PWVs in phases II and III were easily observed. PWVs were 3.52 ± 1.11 m/s in phase I, 5.62 ± 0.30 m/s in phase II, 7.94 ± 0.85 m/s in phase III, and -4.60 ± 0.99 m/s for the reflective wave. PWV was measured using Spatial Compound Imaging with high temporal resolution, and the PWV in each phase may be used as the index for diagnosing stages of arteriosclerosis progression.
    Ultrasonics 01/2014; DOI:10.1016/j.ultras.2014.07.018 · 2.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerosis is the leading cause of cardiovascular disease (CVD) in the Western world. In the early development of atherosclerosis, vessel walls remodel outwardly such that the vessel luminal diameter is minimally affected by early plaque development. Only in the late stages of the disease does the vessel lumen begin to narrow-leading to stenoses. As a result, angiographic techniques are not useful for diagnosing early atherosclerosis. Given the absence of stenoses in the early stages of atherosclerosis, CVD remains subclinical for decades. Thus, methods of diagnosing atherosclerosis early in the disease process are needed so that affected patients can receive the necessary interventions to prevent further disease progression. Pulse wave velocity (PWV) is a biomarker directly related to vessel stiffness that has the potential to provide information on early atherosclerotic disease burden. A number of clinical methods are available for evaluating global PWV, including applanation tonometry and ultrasound. However, these methods only provide a gross global measurement of PWV-from the carotid to femoral arteries-and may mitigate regional stiffness within the vasculature. Additionally, the distance measurements used in the PWV calculation with these methods can be highly inaccurate. Faster and more robust magnetic resonance imaging (MRI) sequences have facilitated increased interest in MRI-based PWV measurements. This review provides an overview of the state-of-the-art in MRI-based PWV measurements. In addition, both gold standard and clinical standard methods of computing PWV are discussed.
    04/2014; 4(2):193-206. DOI:10.3978/j.issn.2223-3652.2014.03.04

Full-text (2 Sources)

Available from
Jun 10, 2014