Alteration of vitamin D metabolic enzyme expression and calcium transporter abundance in kidney involved in type 1 diabetes-induced bone loss.

Center of System Biomedical Sciences, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.
Osteoporosis International (Impact Factor: 4.17). 09/2010; 22(6):1781-8. DOI: 10.1007/s00198-010-1404-1
Source: PubMed

ABSTRACT This study aimed to delineate the mechanism involved in type 1 diabetes-induced bone loss. The results revealed the alteration of vitamin D metabolic enzyme expression and the downregulation of renal calcium transporter abundance in type 1 diabetic mice.
The purpose of this study was to investigate the changes of the expression of vitamin D metabolic enzymes and transcellular calcium-transporting proteins in kidneys from mice with experimentally induced diabetes.
Male DBA/2J mice were injected with either vehicle (control) or streptozotocin (STZ) daily for five consecutive days. Bone mineral density was measured by peripheral quantitative computerized tomography, and bone histomorphology was analyzed by Safranin O staining. Real-time PCR and Western blotting were applied to determine the expression of target genes and proteins.
Type 1 diabetes produced high urinary calcium excretion and loss of trabecular bone measured at the proximal metaphysis of the tibia and the distal femur. Bone loss was associated with deterioration of trabecular bone microstructure. Quantified PCR results showed that mRNA expression level in the kidney of diabetic mice for 25-hydroxyvitamin D-24-hydroxylase was downregulated at week 10, while those for 25-hydroxyvitamin D-1α-hydroxylase were upregulated at week 20. In addition, mRNA expression levels for renal transient receptor potential V6, plasma membrane Ca-ATPase (PMCA)1b, and vitamin D receptor (VDR) genes were decreased in STZ-treated mice. Western blot analysis showed that protein expression of PMCA1b and VDR was significantly decreased in kidneys from STZ-treated mice compared to that of controls.
The limitation in this study is the lack of vitamin D, parathyroid hormone, and phosphorus levels in serum. However, the present study supports the conclusion that the underlying mechanism contributing to type 1 diabetes-associated bone loss may be alterations of vitamin D metabolic enzyme expression and associated decreases in expression of renal calcium transporters.

  • [Show abstract] [Hide abstract]
    ABSTRACT: There are contradictory results about the effect of angiotensin-converting enzyme inhibitors (ACEIs) on bone. This study was performed to address the skeletal renin-angiotensin system (RAS) activity and the effects of the ACEI, captopril, on the bone of streptozotocin-induced type 1 diabetic mice. Histochemical assessment on bone paraffin sections was conducted by Safranin O staining and tartrate-resistant acid phosphatase staining. Micro-computed tomography was performed to analyze bone biological parameters. Gene and protein expression were determined by real-time polymerase chain reaction and immunoblotting, respectively. Type 1 diabetic mice displayed osteopenia phenotype and captopril treatment showed no osteoprotective effects in diabetic mice as shown by the reduction of bone mineral density, trabecular thickness and bone volume/total volume. The mRNA expression of ACE and renin receptor, and the protein expression of renin and angiotensin II were markedly up-regulated in the bone of vehicle-treated diabetic mice compared to those of non-diabetic mice, and these molecular changes of skeletal RAS components were effectively inhibited by treatment with captopril. However, treatment with captopril significantly elevated serum tartrate-resistant acid phosphatase 5b levels, reduced the ratio of osteoprotegerin/receptor activator of nuclear factor-κB ligand expression, increased carbonic anhydrase II mRNA expression and the number of matured osteoclasts and decreased transforming growth factor-β and osteocalcin mRNA expression in the tibia compared to those of diabetic mice. The present study demonstrated that the use of the ACEI, captopril, has no beneficial effect on the skeletal biological properties of diabetic mice. However, this could be attributed, at least partially, to its suppression of osteogenesis and stimulation of osteoclastogenesis, even though it could effectively inhibit high activity of local RAS in the bone of diabetic mice.
    Journal of Bone and Mineral Metabolism 08/2013; DOI:10.1007/s00774-013-0500-7 · 2.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fructus Ligustri Lucidi (FLL), the fruit of Ligustrum lucidum Ait, is a commonly prescribed herb to nourish the endocrine and renal systems and to strengthen the bones in Traditional Chinese Medicine. This study was aimed to determine the effects of water fraction of FLL ethanol extract (WF-EE) on urinary calcium excretion and trabecular bone properties in type 1 diabetic mice.
    Journal of Ethnopharmacology 10/2014; DOI:10.1016/j.jep.2014.10.025 · 2.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim was to determine the intestinal Ca(2+) absorption in type I diabetic rats after different times of STZ induction, as well as the gene and protein expression of molecules involved in both the transcellular and paracelluar Ca(2+) pathways. The redox state and the antioxidant enzymes of the enterocytes were also evaluated in duodenum from either diabetic or insulin-treated diabetic rats as compared to control rats. Male Wistar rats (150-200g) were divided into two groups: 1) controls and 2) STZ-induced diabetic rats (60mg/kg b.w.). A group of diabetic rats received insulin for five days. The insulin was adjusted daily to maintain a normal blood glucose level. Five 5 d after STZ injection, there was a reduction in the intestinal Ca(2+) absorption, which was maintained for 30 d and disappeared at 60 d. Similar changes occurred in the GSH and (˙)O2(-) levels. The protein expression of molecules involved in the transcellular pathway increased at 5 and 30 d returning to control values at 60 d. Their mRNA levels declined considerably at 60 d. The gene and protein expression of claudin 2 was upregulated at 30 d. Catalase activity increased at 5 and 30 d normalizing at 60 d. To conclude, type I D.m. inhibits the intestinal Ca(2+) absorption, which is transient leading to a time dependent adaptation and returning the absorptive process to normal values. The inhibition is accompanied by oxidative stress. When insulin is administered, the duodenal redox state returns to control values and the intestinal Ca(2+) absorption normalizes. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 11/2014; 1852(3). DOI:10.1016/j.bbadis.2014.11.018 · 5.09 Impact Factor