Chymase Inhibition Prevents Fibronectin and Myofibrillar Loss and Improves Cardiomyocyte Function and LV Torsion Angle in Dogs With Isolated Mitral Regurgitation

Center for Heart Failure Research, Department of Medicine, University of Alabama at Birmingham, AL 35294-2180, USA.
Circulation (Impact Factor: 14.95). 09/2010; 122(15):1488-95. DOI: 10.1161/CIRCULATIONAHA.109.921619
Source: PubMed

ABSTRACT The left ventricular (LV) dilatation of isolated mitral regurgitation (MR) is associated with an increase in chymase and a decrease in interstitial collagen and extracellular matrix. In addition to profibrotic effects, chymase has significant antifibrotic actions because it activates matrix metalloproteinases and kallikrein and degrades fibronectin. Thus, we hypothesize that chymase inhibitor (CI) will attenuate extracellular matrix loss and LV remodeling in MR.
We studied dogs with 4 months of untreated MR (MR; n=9) or MR treated with CI (MR+CI; n=8). Cine MRI demonstrated a >40% increase in LV end-diastolic volume in both groups, consistent with a failure of CI to improve a 25% decrease in interstitial collagen in MR. However, LV cardiomyocyte fractional shortening was decreased in MR versus normal dogs (3.71±0.24% versus 4.81±0.31%; P<0.05) and normalized in MR+CI dogs (4.85±0.44%). MRI with tissue tagging demonstrated an increase in LV torsion angle in MR+CI versus MR dogs. CI normalized the significant decrease in fibronectin and FAK phosphorylation and prevented cardiomyocyte myofibrillar degeneration in MR dogs. In addition, total titin and its stiffer isoform were increased in the LV epicardium and paralleled the changes in fibronectin and FAK phosphorylation in MR+CI dogs.
These results suggest that chymase disrupts cell surface-fibronectin connections and FAK phosphorylation that can adversely affect cardiomyocyte myofibrillar structure and function. The greater effect of CI on epicardial versus endocardial titin and noncollagen cell surface proteins may be responsible for the increase in torsion angle in chronic MR.

Download full-text


Available from: Henk L Granzier, Aug 19, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tenascin-C (TN-C) might aggravate left ventricular remodeling after myocardial infarction (MI). Our previous study demonstrated that ventricular remodeling after MI is linked with the degradation of fibronectin (FN). The aim of the present study was to determine whether cardiac extracellular matrix TN-C deposition after MI requires FN degradation. We found that treatment with angiotensin (ANG) II significantly down-regulated FN while remarkably up-regulated TN-C in co-cultured cardiomyocytes and fibroblasts. Inhibitors of matrix metalloproteinase (MMP)-2, MMP-3 or MMP-9 significantly attenuated ANG II-induced loss of FN and obviously blunted ANG II-induced re-expression of TN-C in co-cultured cells. Moreover, FN fragments dose-dependently induced the deposition of TN-C. In addition, MI induced a significant reduction of FN protein expression and a marked elevation of TN-C expression level at day 7 after MI compared with the sham group. The present findings suggest that cardiac TN-C matrix deposition after MI is induced by FN degradation, which is dependent on the activation of MMPs. These findings might contribute to gain mechanistic insights into the regulation of TN-C formation after MI.
    Biochemical and Biophysical Research Communications 06/2011; 409(2):321-7. DOI:10.1016/j.bbrc.2011.05.013 · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms of left ventricular (LV) dysfunction in isolated mitral regurgitation (MR) are not well understood. Vasodilator therapy in other forms of LV dysfunction reduces LV wall stress and improves LV function; however, studies in isolated MR show no beneficial effect on LV remodeling using vasodilator drugs or renin-angiotensin system blockade. Therefore, the search for new therapies that improve LV remodeling and function in isolated MR is clinically significant. Recent work in the authors' laboratory has demonstrated increased oxidants from a number of sources including the enzyme xanthine oxidase (XO) in the LV of patients with isolated MR. In addition to being a major source of reactive oxygen species, XO is linked to bioenergetic dysfunction because its substrates derive from adenosine triphosphate catabolism. Correspondingly, there was also evidence of aggregates of small mitochondria in cardiomyocytes, which is generally considered a response to bioenergetic deficit in cells. Future studies are required to determine whether XO and persistent oxidative stress are causative in maladaptive LV remodeling and offer potential therapeutic targets in ameliorating LV damage in patients with isolated MR.
    The American Journal of the Medical Sciences 08/2011; 342(2):114-9. DOI:10.1097/MAJ.0b013e318224ab93 · 1.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Xanthine oxidoreductase (XOR) is increased in the left ventricle (LV) of humans with volume overload (VO), and mitochondrial inhibition of the respiratory chain occurs in animal models of VO. Because mitochondria are both a source and a target of reactive oxygen and nitrogen species, we hypothesized that activation of XOR and mitochondrial dysfunction are interdependent. To test this we used the aortocaval fistula (ACF) rat model of VO and a simulation of the stretch response in isolated adult cardiomyocytes with and without the inhibitor of XOR, allopurinol, or the mitochondrially targeted antioxidant MitoQ. Xanthine oxidase (XO) activity was increased in cardiomyocytes from ACF vs sham rats (24h) without an increase in XO protein. A twofold increase in LV end-diastolic pressure/wall stress and a decrease in LV systolic elastance with ACF were improved when allopurinol treatment (100mg/kg) was started at ACF induction. Subsarcolemmal State 3 mitochondrial respiration was significantly decreased in ACF and normalized by allopurinol. Cardiomyocytes subjected to 3h cyclical stretch resulted in an increase in XO activity and mitochondrial swelling, which was prevented by allopurinol or MitoQ pretreatment. These studies establish an early interplay between cardiomyocyte XO activation and bioenergetic dysfunction that may provide a new target that prevents progression to heart failure in VO.
    Free Radical Biology and Medicine 08/2011; 51(11):1975-84. DOI:10.1016/j.freeradbiomed.2011.08.022 · 5.71 Impact Factor
Show more