Article

Same sex, no sex, and unaware sex in neurotoxicology

Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States.
NeuroToxicology (Impact Factor: 3.05). 09/2010; 32(5):509-17. DOI: 10.1016/j.neuro.2010.09.005
Source: PubMed

ABSTRACT Males and females of virtually all species differ in how they respond to their environment. Because such differences exist in almost all biological realms, including disease patterns and therapeutic outcomes, they have evoked calls by various bodies to incorporate their assessment in research. Neurobehavioral indices pose special questions because, unlike outwardly visible markers, they are described by complex functional outcomes or subtle alterations in brain structure. These divergent responses arise because they are inscribed in the genome itself and then by endocrine mechanisms that govern sexual differentiation of the brain during development and operate throughout life. Other organ systems that exhibit sex differences include the liver, an important consideration for neurotoxicology because it may process many toxic chemicals differentially in males and females. Despite the scope and pervasiveness of sex differences, however, they are disregarded by much of neurotoxicology research. Males predominate in behavioral experiments, few such experiments study both sexes, some investigators fail to even describe the sex of their subjects, and in vitro studies tend to wholly ignore sex, even for model systems aimed at neurological disorders that display marked sex differences. The public is acutely aware of sex differences in behavior, as attested by its appetite for books on the topic. It closely follows debates about the proportion of women in professions that feature science and mathematics. Neurotoxicology, especially in the domain of laboratory research, will be hindered in its ability to translate its findings into human health measures if it assigns sex differences to a minor role. It must also be sensitive to how such debates are framed. Often, the differences evoking the most discussion are subtle in scope. They do not lend themselves to the typical analyses conducted by experimenters; that is, reliance on mean differences and null hypothesis testing.

Download full-text

Full-text

Available from: Bernard Weiss, Jul 02, 2015
0 Followers
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The African Penguin population has drastically declined over the last 100 years. Changes in food availabil-ity due to over-fishing and other oceanographic changes seem to be major causes. However, it has also been 30 years since organic pollutants as a potential factor have been assessed. We analysed penguin eggs collected in 2011 and 2012 from two breeding colonies 640 km apart: Robben Island near Cape Town on the Atlantic Ocean coast, and Bird Island near Port Elizabeth on the Indian Ocean coast of South Africa. We quantified organochlorine pesticides, brominated flame retardants, and perfluorinated com-pounds (PFCs). Compared to 30 years ago, concentrations of RDDT have remained about the same or slightly lower, while RPCBs declined almost four-fold. The use of DDT in malaria control is unlikely to have contributed. PFCs were detected in all eggs. Indications (non-significant) of eggshell thinning asso-ciated with RDDT and RPCB was found. It seems therefore that the concentrations of measured organic pollutants the African Penguin eggs are not contributing directly to its current demise, but concerns remain about thinner shells and desiccation. Effects of combinations of compounds and newer com-pounds cannot be excluded, as well as more subtle effects on reproduction, development, and behaviour.
    Chemosphere 05/2015; 126:1-10. DOI:10.1016/j.chemosphere.2014.12.071 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the presence, levels, relationships, and risks of HCHs, DDTs, chlordanes, mirex, PCBs, and brominated flame retardants (BFRs) in terrestrial and aquatic bird eggs from an area in South Africa where DDT is used for malaria control. We found one of the highest ΣDDT levels reported this century; 13000ng/gwm (wet mass) in Grey Heron eggs which exceeds critical levels for reproductive success (3000ng/gwm) calculated for Brown Pelicans, with a no-effect level estimated at 500ng/gwm. Even higher ΣDDT levels at 16000ng/gwm were found in House Sparrow eggs (possibly the highest ever recorded for sparrows), with a maximum of 24400ng/gwm. Significant eggshell thinning in Cattle Egrets (33% between thickest and thinnest) was associated with increased levels of p,p'-DDT and p,p'-DDE. There were indications of unknown use of DDT and lindane. Relative to DDT, PCBs and BFRs levels were quite low. Ordinated data showed that different terrestrial pollutant profiles converged to a homogenised aquatic profile. Converging profiles, high levels of DDT in heron and sparrow eggs, and thinning eggs shells, indicate risk and impacts at release, in the aquatic environment, and in between. If characteristic life-strategies of birds in warm areas (e.g. longer-lived and fewer eggs per clutch) increases the risk compared with similar birds living in colder regions when both experience the same environmental pollutant levels, then malaria control using DDT probably has more significant impacts on biota than previously realised. Therefore, risk assessment and modelling without hard data may miss crucial impacts and risks, as the chemical use patterns and ecologies in Africa and elsewhere may differ from the conditions and assumptions of existing risk assessment and modelling parameters. Consideration of other findings associated with DDT from the same area (intersex in fish and urogental birth defects in baby boys), together with the findings of this study (high levels of DDT in bird eggs, eggshell thinning in the Cattle Egrets, and the apparent absence of breeding piscivore birds in the sprayed area) are strongly suggestive of negative impacts from DDT spraying for Malaria control. Our data presents strong arguments for an expedited process of replacing DDT with sustainable methods.
    Environmental Research 07/2013; 132. DOI:10.1016/j.envres.2013.06.003 · 3.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the presence, levels, relationships, and risks of HCHs, DDTs, chlordanes, mirex, PCBs, and brominated flame retardants (BFRs) in terrestrial and aquatic bird eggs from an area in South Africa where DDT is used for malaria control. We found one of the highest ΣDDT levels reported this century; 13 000 ng/g wm (wet mass) in Grey Heron eggs which exceeds critical levels for reproductive success (3000 ng/g wm) calculated for Brown Pelicans, with a no-effect level estimated at 500 ng/g wm. Even higher ΣDDT levels at 16 000 ng/g wm were found in House Sparrow eggs (possibly the highest ever recorded for sparrows), with a maximum of 24 400 ng/g wm. Significant eggshell thinning in Cattle Egrets (33% between thickest and thinnest) was associated with increased levels of p,p′-DDT and p,p′-DDE. There were indications of unknown use of DDT and lindane. Relative to DDT, PCBs and BFRs levels were quite low. Ordinated data showed that different terrestrial pollutant profiles converged to a homogenised aquatic profile. Converging profiles, high levels of DDT in heron and sparrow eggs, and thinning eggs shells, indicate risk and impacts at release, in the aquatic environment, and in between. If characteristic life-strategies of birds in warm areas (e.g. longer-lived and fewer eggs per clutch) increases the risk compared with similar birds living in colder regions when both experience the same environmental pollutant levels, then malaria control using DDT probably has more significant impacts on biota than previously realised. Therefore, risk assessment and modelling without hard data may miss crucial impacts and risks, as the chemical use patterns and ecologies in Africa and elsewhere may differ from the conditions and assumptions of existing risk assessment and modelling parameters. Considera- tion of other findings associated with DDT from the same area (intersex in fish and urogental birth defects in baby boys), together with the findings of this study (high levels of DDT in bird eggs, eggshell thinning in the Cattle Egrets, and the apparent absence of breeding piscivore birds in the sprayed area) are strongly suggestive of negative impacts from DDT spraying for Malaria control. Our data presents strong arguments for an expedited process of replacing DDT with sustainable methods.
    Environmental Research 01/2013; · 3.95 Impact Factor