Article

Same sex, no sex, and unaware sex in neurotoxicology

Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States.
NeuroToxicology (Impact Factor: 3.05). 09/2010; 32(5):509-17. DOI: 10.1016/j.neuro.2010.09.005
Source: PubMed

ABSTRACT Males and females of virtually all species differ in how they respond to their environment. Because such differences exist in almost all biological realms, including disease patterns and therapeutic outcomes, they have evoked calls by various bodies to incorporate their assessment in research. Neurobehavioral indices pose special questions because, unlike outwardly visible markers, they are described by complex functional outcomes or subtle alterations in brain structure. These divergent responses arise because they are inscribed in the genome itself and then by endocrine mechanisms that govern sexual differentiation of the brain during development and operate throughout life. Other organ systems that exhibit sex differences include the liver, an important consideration for neurotoxicology because it may process many toxic chemicals differentially in males and females. Despite the scope and pervasiveness of sex differences, however, they are disregarded by much of neurotoxicology research. Males predominate in behavioral experiments, few such experiments study both sexes, some investigators fail to even describe the sex of their subjects, and in vitro studies tend to wholly ignore sex, even for model systems aimed at neurological disorders that display marked sex differences. The public is acutely aware of sex differences in behavior, as attested by its appetite for books on the topic. It closely follows debates about the proportion of women in professions that feature science and mathematics. Neurotoxicology, especially in the domain of laboratory research, will be hindered in its ability to translate its findings into human health measures if it assigns sex differences to a minor role. It must also be sensitive to how such debates are framed. Often, the differences evoking the most discussion are subtle in scope. They do not lend themselves to the typical analyses conducted by experimenters; that is, reliance on mean differences and null hypothesis testing.

0 Bookmarks
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Paraoxonase 2 (PON2) is a member of a gene family which also includes the more studied PON1, as well as PON3. PON2 is unique among the three PONs, as it is expressed in brain tissue. PON2 is a lactonase and displays anti-oxidant and anti-inflammatory properties. PON2 levels are highest in dopaminergic regions (e.g. striatum), are higher in astrocytes than in neurons, and are higher in brain and peripheral tissues of female mice than male mice. At the sub-cellular level, PON2 localizes primarily in mitochondria, where it scavenges superoxides. Lack of PON2 (as in PON2(-/-) mice), or lower levels of PON2 (as in male mice compared to females) increases susceptibility to oxidative stress-induced toxicity. Estradiol increases PON2 expression in vitro and in vivo, and provides neuroprotection against oxidative stress. Such neuroprotection is not present in CNS cells from PON2(-/-) mice. Similar results are also found with the polyphenol quercetin. PON2, given its cellular localization and antioxidant and anti-inflammatory actions, may represent a relevant enzyme involved in neuroprotection, and may represent a novel target for neuroprotective strategies. Its differential expression in males and females may explain gender differences in the incidence of various diseases, including neurodevelopmental, neurological, and neurodegenerative diseases.
    NeuroToxicology 09/2013; 43. DOI:10.1016/j.neuro.2013.08.011 · 3.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The African Penguin population has drastically declined over the last 100 years. Changes in food availabil-ity due to over-fishing and other oceanographic changes seem to be major causes. However, it has also been 30 years since organic pollutants as a potential factor have been assessed. We analysed penguin eggs collected in 2011 and 2012 from two breeding colonies 640 km apart: Robben Island near Cape Town on the Atlantic Ocean coast, and Bird Island near Port Elizabeth on the Indian Ocean coast of South Africa. We quantified organochlorine pesticides, brominated flame retardants, and perfluorinated com-pounds (PFCs). Compared to 30 years ago, concentrations of RDDT have remained about the same or slightly lower, while RPCBs declined almost four-fold. The use of DDT in malaria control is unlikely to have contributed. PFCs were detected in all eggs. Indications (non-significant) of eggshell thinning asso-ciated with RDDT and RPCB was found. It seems therefore that the concentrations of measured organic pollutants the African Penguin eggs are not contributing directly to its current demise, but concerns remain about thinner shells and desiccation. Effects of combinations of compounds and newer com-pounds cannot be excluded, as well as more subtle effects on reproduction, development, and behaviour.
    Chemosphere 05/2015; 126:1-10. DOI:10.1016/j.chemosphere.2014.12.071 · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Marine mammals are indicator species of the Arctic ecosystem and an integral component of the traditional Inuit diet. The potential neurotoxic effects of increased mercury (Hg) in beluga whales (Delphinapterus leucas), ringed seals (Pusa hispida), and polar bears (Ursus maritimus) are not clear. We assessed the risk of Hg-associated neurotoxicity to these species by comparing their brain Hg concentrations with threshold concentrations for toxic endpoints detected in laboratory animals and field observations: clinical symptoms (>6.75mg/kg wet weight (ww)), neuropathological signs (>4mg/kg ww), neurobehavioral changes (>0.4mg/kg ww), and neurochemical changes (>0.1mg/kg ww). The total Hg (THg) concentrations in the cerebellum and frontal lobe of ringed seals and polar bears were <0.5mg/kg ww, whereas the average concentration in beluga whale brain was >3mg/kg ww. Our results suggest that brain THg levels in polar bears are below levels that induce neurobehavioral effects as reported in the literature, while THg concentrations in ringed seals are within the range that elicit neurobehavioral effects and individual ringed seals exceed the threshold for neurochemical changes. The relatively high THg concentration in beluga whales exceeds all of the neurotoxicity thresholds assessed. High brain selenium (Se):Hg molar ratios were observed in all three species, suggesting that Se could protect the animals from Hg-associated neurotoxicity. This assessment was limited by several factors that influence neurotoxic effects in animals, including: animal species; form of Hg in the brain; and interactions with modifiers of Hg-associated toxicity, such as Se. Comparing brain Hg concentrations in wildlife with concentrations of appropriate laboratory studies can be used as a tool for risk characterization of the neurotoxic effects of Hg in Arctic marine mammals.
    Science of The Total Environment 06/2014; DOI:10.1016/j.scitotenv.2014.05.134 · 3.16 Impact Factor

Full-text (2 Sources)

Download
52 Downloads
Available from
May 28, 2014