Article

High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects

Department of Human Nutritional Sciences, Richardson Centre for Functional Foods and Nutraceuticals, 196 Innovation Drive, University of Manitoba, Winnipeg, MB, Canada R3T 6C5.
The British journal of nutrition (Impact Factor: 3.34). 02/2011; 105(3):417-27. DOI: 10.1017/S0007114510003697
Source: PubMed

ABSTRACT Recently, novel dietary oils with modified fatty acid profiles have been manufactured to improve fatty acid intakes and reduce CVD risk. Our objective was to evaluate the efficacy of novel high-oleic rapeseed (canola) oil (HOCO), alone or blended with flaxseed oil (FXCO), on circulating lipids and inflammatory biomarkers v. a typical Western diet (WD). Using a randomised, controlled, crossover trial, thirty-six hypercholesterolaemic subjects consumed three isoenergetic diets for 28 d each containing approximately 36% energy from fat, of which 70% was provided by HOCO, FXCO or WD. Dietary fat content of SFA, MUFA, PUFA n-6 and n-3 was 6, 23, 5, 1% energy for HOCO; 6, 16, 5, 7·5% energy for FXCO; 11·5, 16, 6, 0·5% energy for WD. After 28 d, compared with WD, LDL-cholesterol was reduced 15·1% (P < 0·001) with FXCO and 7·4% (P < 0·001) with HOCO. Total cholesterol (TC) was reduced 11% (P < 0·001) with FXCO and 3·5% (P = 0·002) with HOCO compared with WD. Endpoint TC differed between FXCO and HOCO (P < 0·05). FXCO consumption reduced HDL-cholesterol by 8·5% (P < 0·001) and LDL:HDL ratio by 7·5% (P = 0·008) v. WD. FXCO significantly decreased E-selectin concentration compared with WD (P = 0·02). No differences were observed in inflammatory markers after the consumption of HOCO compared with WD. In conclusion, consumption of novel HOCO alone or when blended with flaxseed oil is cardioprotective through lipid-lowering effects. The incorporation of flaxseed oil may also target inflammation by reducing plasma E-selectin.

Full-text

Available from: Peter JH Jones, May 01, 2015
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oleic acid consumption is considered cardio-protective according to studies conducted examining effects of the Mediterranean diet. However, animal models have shown that oleic acid consumption increases LDL particle cholesteryl oleate content which is associated with increased LDL-proteoglycan binding and atherosclerosis. The objective was to examine effects of varying oleic, linoleic and docosahexaenoic acid consumption on human LDL-proteoglycan binding in a non-random subset of the Canola Oil Multi-center Intervention Trial (COMIT) participants. COMIT employed a randomized, double-blind, five-period, cross-over trial design. Three of the treatment oil diets: 1) a blend of corn/safflower oil (25:75); 2) high oleic canola oil; and 3) DHA-enriched high oleic canola oil were selected for analysis of LDL-proteoglycan binding in 50 participants exhibiting good compliance. LDL particles were isolated from frozen plasma by gel filtration chromatography and LDL cholesteryl esters quantified by mass-spectrometry. LDL-proteoglycan binding was assessed using surface plasmon resonance. LDL particle cholesterol ester fatty acid composition was sensitive to the treatment fatty acid compositions, with the main fatty acids in the treatments increasing in the LDL cholesterol esters. The corn/safflower oil and high-oleic canola oil diets lowered LDL-proteoglycan binding relative to their baseline values (p = 0.0005 and p = 0.0012, respectively). At endpoint, high-oleic canola oil feeding resulted in lower LDL-proteoglycan binding than corn/safflower oil (p = 0.0243) and DHA-enriched high oleic canola oil (p = 0.0249), although high-oleic canola oil had the lowest binding at baseline (p = 0.0344). Our findings suggest that high-oleic canola oil consumption in humans increases cholesteryl oleate percentage in LDL, but in a manner not associated with a rise in LDL-proteoglycan binding.
    Atherosclerosis 02/2015; 238(2):231-238. DOI:10.1016/j.atherosclerosis.2014.12.010 · 3.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperlipidemia and stress are important factors affecting cardiovascular health in middle-aged individuals. We investigated the effects of N-acetylcysteine (NAC) and sesame oil on the lipidemic status, liver architecture and the hypothalamic-pituitary-adrenal (HPA) axis of middle-aged mice fed a cholesterol-enriched diet. We randomized 36 middle-aged C57bl/6 mice into 6 groups: a control group, a cholesterol/cholic acid diet group, a cholesterol/cholic acid diet group with NAC supplementation, a cholesterol/cholic acid diet enriched with 10% sesame oil and two groups receiving a control diet enriched with NAC or sesame oil. NAC administration prevented the onset of the disturbed lipid profile, exhibiting decreased lipid peroxidation and alkaline phosphatase (ALP) levels, restored nitric oxide bioavailability and reduced hepatic damage, compared to non-supplemented groups. High-cholesterol feeding resulted in increased glucocorticoid receptors (GR) levels, while NAC supplementation prevented this effect. NAC supplementation presented significant antioxidant capacity by means of preventing serum lipid status alterations, hepatic damage, and HPA axis disturbance due to high-cholesterol feeding in middle-aged mice. These findings suggest a beneficial preventive action of plant-derived antioxidants, such as NAC, on lipid metabolism and on the HPA axis.
    Scientific Reports 10/2014; DOI:10.1038/srep06806 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Growth in fast food consumption has contributed to weight gain among Americans. This has led to an increase in cardiovascular disease and other diseases associated with being overweight. Some evidence suggests that substituting canola oil for other oils when preparing foods may be nutritionally beneficial. This study compared the sensory characteristics/oil degradation of high oleic canola oil and peanut oil. The study showed high oleic canola oil to be a particularly strong alternative for those seeking to switch to an oil that offers greater nutritional benefits without compromising the appearance, flavor, taste or texture of the foods being prepared.
    Journal of Foodservice Business Research 04/2013; 16(2):210-217. DOI:10.1080/15378020.2013.782245