High-oleic rapeseed (canola) and flaxseed oils modulate serum lipids and inflammatory biomarkers in hypercholesterolaemic subjects

Department of Human Nutritional Sciences, Richardson Centre for Functional Foods and Nutraceuticals, 196 Innovation Drive, University of Manitoba, Winnipeg, MB, Canada R3T 6C5.
The British journal of nutrition (Impact Factor: 3.34). 02/2011; 105(3):417-27. DOI: 10.1017/S0007114510003697
Source: PubMed

ABSTRACT Recently, novel dietary oils with modified fatty acid profiles have been manufactured to improve fatty acid intakes and reduce CVD risk. Our objective was to evaluate the efficacy of novel high-oleic rapeseed (canola) oil (HOCO), alone or blended with flaxseed oil (FXCO), on circulating lipids and inflammatory biomarkers v. a typical Western diet (WD). Using a randomised, controlled, crossover trial, thirty-six hypercholesterolaemic subjects consumed three isoenergetic diets for 28 d each containing approximately 36% energy from fat, of which 70% was provided by HOCO, FXCO or WD. Dietary fat content of SFA, MUFA, PUFA n-6 and n-3 was 6, 23, 5, 1% energy for HOCO; 6, 16, 5, 7·5% energy for FXCO; 11·5, 16, 6, 0·5% energy for WD. After 28 d, compared with WD, LDL-cholesterol was reduced 15·1% (P < 0·001) with FXCO and 7·4% (P < 0·001) with HOCO. Total cholesterol (TC) was reduced 11% (P < 0·001) with FXCO and 3·5% (P = 0·002) with HOCO compared with WD. Endpoint TC differed between FXCO and HOCO (P < 0·05). FXCO consumption reduced HDL-cholesterol by 8·5% (P < 0·001) and LDL:HDL ratio by 7·5% (P = 0·008) v. WD. FXCO significantly decreased E-selectin concentration compared with WD (P = 0·02). No differences were observed in inflammatory markers after the consumption of HOCO compared with WD. In conclusion, consumption of novel HOCO alone or when blended with flaxseed oil is cardioprotective through lipid-lowering effects. The incorporation of flaxseed oil may also target inflammation by reducing plasma E-selectin.

Download full-text


Available from: Peter JH Jones, Jul 06, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fatty acids convert to fatty acid ethanolamides which associate with lipid signalling, fat oxidation, and energy balance; however, the extent to which dietary fatty acids manipulation can impact such control processes through fatty acid ethanolamides-related mechanisms remains understudied. The objective was to examine the impact of diets containing 6% corn oil, high oleic canola oil, docosahexaenoic acid + high oleic canola oil, and fish oil on plasma and organ levels of fatty acid ethanolamides, peroxisome proliferator-activated receptor-α regulatory targets, and lipid metabolism in Syrian Golden hamsters. After 29 days, in plasma, animals that were fed fish oil showed greater (p < 0.05) oleoylethanolamide and lower (p < 0.05) arachidonoylethanolamide and palmitoylethanolamide levels compared with other groups, while animals fed canola oil showed higher (p < 0.05) oleoylethanolamide levels in proximal intestine and liver than groups that were fed coin oil and fish oil. The canola oil group showed elevated (p < 0.01) fat oxidation (%) and over 3.0-fold higher (p < 0.05) hepatic-CD36 expression compared with the corn oil group. Hepatic-lipogenesis was lower (p < 0.05) in hamsters that were fed DHA-canola oil compared with the corn oil group. To conclude, dietary fatty acids produced shifts in plasma and organ levels of arachidonoylethanolamide, oleoylethanolamide, and palmitoylethanolamid, which were accompanied by changes in gene expression, lipogenesis, and energy expenditure, suggesting mechanisms through which dietary fatty acids influence disease risk.
    Applied Physiology Nutrition and Metabolism 08/2013; 38(8):870-8. DOI:10.1139/apnm-2012-0289 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the changes in adiposity, cardiovascular and liver structure and function, and tissue fatty acid compositions in response to oleic acid-rich macadamia oil, linoleic acid-rich safflower oil and α-linolenic acid-rich flaxseed oil (C18 unsaturated fatty acids) in rats fed either a diet high in simple sugars and mainly saturated fats or a diet high in polysaccharides (cornstarch) and low in fat. The fatty acids induced lipid redistribution away from the abdomen, more pronounced with increasing unsaturation; only oleic acid increased whole-body adiposity. Oleic acid decreased plasma total cholesterol without changing triglycerides and nonesterified fatty acids, whereas linoleic and α-linolenic acids decreased plasma triglycerides and nonesterified fatty acids but not cholesterol. α-Linolenic acid improved left ventricular structure and function, diastolic stiffness and systolic blood pressure. Neither oleic nor linoleic acid changed the left ventricular remodeling induced by high-carbohydrate, high-fat diet, but both induced dilation of the left ventricle and functional deterioration in low fat-diet-fed rats. α-Linolenic acid improved glucose tolerance, while oleic and linoleic acids increased basal plasma glucose concentrations. Oleic and α-linolenic acids, but not linoleic acid, normalized systolic blood pressure. Only oleic acid reduced plasma markers of liver damage. The C18 unsaturated fatty acids reduced trans fatty acids in the heart, liver and skeletal muscle with lowered stearoyl-CoA desaturase-1 activity index; linoleic and α-linolenic acids increased accumulation of their C22 elongated products. These results demonstrate different physiological and biochemical responses to primary C18 unsaturated fatty acids in a rat model of human metabolic syndrome.
    The Journal of nutritional biochemistry 01/2013; 24(7). DOI:10.1016/j.jnutbio.2012.11.006 · 4.59 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fatty acid profile of dietary fats may contribute to its channelling toward oxidation versus storage, influencing energy and weight balance. Our objective was to compare the effects of diets enriched with high-oleic canola oil (HOCO), alone or blended with flaxseed oil (FXCO), on energy expenditure, substrate utilization, and body composition versus a typical Western diet (WD). Using a randomized crossover design, 34 hypercholesterolemic subjects (n=22 females) consumed 3 controlled diets for 28days containing ~49% energy from carbohydrate, 14% energy from protein, and 37% energy from fat, of which 70% of fat was provided by HOCO rich in oleic acid, FXCO rich in alpha-linolenic acid, or WD rich in saturated fat. Indirect calorimetry measured energy expenditure and substrate oxidation. Body composition was analyzed by dual-energy x-ray absorptiometry. After 28days, resting and postprandial energy expenditure and substrate oxidation were not different after consumption of the HOCO or FXCO diets compared with a typical Western diet. No significant changes in body composition measures were observed between diets. However, the android-to-gynoid ratio tended to increase (P=.055) after the FXCO diet compared with the HOCO diet. The data suggest that substituting a typical Western dietary fatty acid profile with HOCO or FXCO does not significantly modulate energy expenditure, substrate oxidation or body composition in hypercholesterolemic males and females.
    Metabolism: clinical and experimental 06/2012; 61(11):1598-605. DOI:10.1016/j.metabol.2012.04.016 · 3.61 Impact Factor