Article

Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
Physiologia Plantarum (Impact Factor: 3.66). 01/2011; 141(1):11-8. DOI: 10.1111/j.1399-3054.2010.01412.x
Source: PubMed

ABSTRACT Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress.

0 Bookmarks
 · 
142 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Osmotic and ionic stresses were the primary and instant damage produced by salt stress. They can also bring about other secondary stresses. Soybean is an important economic crop and the wild soybean aroused increasing attention for its excellent performance in salt resistance. For this reason, we compared the different performances of Glycine max L. (ZH13) and Glycine soja L. (BB52) in both young and mature seedlings, hoping to clarify the specific reasons. Our research revealed that, compared to the cultivated soybean, the wild soybean was able to maintain higher water potential and relative water content (RWC), accumulate more amount of proline and glycine betaine, reduce the contents of Na(+) and Cl(-) by faster efflux, and cut down the efflux of the K(+) as well as keep higher K(+)/Na(+) ratio. And what is more is that, almost all the excel behaviors became particularly obvious under higher NaCl concentration (300 mM). Therefore, according to all the detections and comparisons, we concluded that the wild soybean had different tolerance mechanisms and better salt resistance. It should be used as eminent germplasm resource to enhance the resistant ability of cultivated soybean or even other crops.
    TheScientificWorldJournal. 01/2014; 2014:651745.