Elucidation of the decomposition pathways of protonated and deprotonated estrone ions: application to the identification of photolysis products

Ecole Polytechnique et CNRS, Département de Chimie, Laboratoire des Mécanismes Réactionnels (DCMR), UMR 7651, 91128 Palaiseau Cedex, France.
Rapid Communications in Mass Spectrometry (Impact Factor: 2.51). 10/2010; 24(20):2999-3010. DOI: 10.1002/rcm.4722
Source: PubMed

ABSTRACT With the future aim of elucidating the unknown structures of estrogen degradation products, we characterized the dissociation pathways of protonated estrone (E1) under collisional activation in liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments employing a quadrupole time-of-flight mass spectrometer. Positive ion and negative ion modes give information on the protonated and deprotonated molecules and their product ions. The mass spectra of estrone methyl ether (CH(3)-E1) and estrone-d(4) (E1-d(4)) were compared with that of E1 in order (i) to elucidate the dissociation mechanisms of protonated and deprotonated molecules and (ii) to propose likely structures for each product ions. The positive ion acquisition mode yielded more fragmentation. The mass spectra of E1 were compared with those of estradiol (E2), estriol (E3) and 17-ethynylestradiol (EE2). This comparison allowed the identification of marker ions for each ring of the estrogenic structure. Accurate mass measurements have been carried out for all the identified ions. The resulting ions revealed to be useful for the characterization of structural modifications induced by photolysis on each ring of the estrone molecule. These results are very promising for the determination of new metabolites in the environment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of the mass spectral product ion structure is highlighted in quantitative assays, which typically use multiple reaction monitoring (MRM), and in the discovery of novel metabolites. Estradiol is an important sex steroid whose quantitation and metabolite identification using tandem mass spectrometry has been widely employed in numerous clinical studies. Negative electrospray ionization tandem mass spectrometry of estradiol (E2) results in several product ions, including the abundant m/z 183 and 169. Although m/z 183 is one of the most abundant product ions used in many quantitative assays, the structure of m/z 183 has not been rigorously examined. We suggest a structure for m/z 183 and a mechanism of formation consistent with collision induced dissociation (CID) of E2 and several stable isotopes ([D4]-E2, [(13)C6]-E2, and [D1]-E2). An additional product ion from E2, namely m/z 169, has also been examined. MS(3) experiments indicated that both m/z 183 and m/z 169 originate from only E2 [M - H](-) m/z 271. These ions, m/z 183 and m/z 169, were also present in the collision induced decomposition mass spectra of other prominent estrogens, estrone (E1) and estriol (E3), indicating that these two product ions could be used to elucidate the estrogenic origin of novel metabolites. We propose two fragmentation schemes to explain the CID data and suggest a structure of m/z 183 and m/z 169 consistent with several isotopic variants and high resolution mass spectrometric measurements.
    Journal of the American Society for Mass Spectrometry 08/2013; DOI:10.1007/s13361-013-0705-y · 3.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The photochemical behavior of a natural estrogen estriol (E3) was investigated in the presence of the natural photoreactive constituents including nitrate, iron(III), and humic acid (HA). The direct photodegradation of E3 increased with increasing incident light intensity, decreasing initial concentration of E3 and increasing pH in the range of 6.0 to 10.0. The direct photodegradation of the deprotonated speciation of E3 was much faster than that of its protonated form. The presence of NO3(-) and iron(III) promoted the photochemical loss of E3 in the aqueous solutions. The quenching experiments verified that hydroxyl radicals were predominantly responsible for the indirect photodegradation of E3. HA could act as photosensitizer, light screening agent and free radical quencher. For the first time, the enhancement or inhibition effect of HA on photodegradation was found to depend on the irradiation light intensity. HA enhanced the photodegradation of E3 under sunlight or weak irradiation of simulated sunlight. In contrast, under high irradiation light intensity, HA inhibited the photodegradation. The hydroxylation photoproducts were identified using GC-MS and the photodegradation pathway of E3 was proposed.
    Science of The Total Environment 07/2013; 463-464C:802-809. DOI:10.1016/j.scitotenv.2013.06.026 · 3.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex hormones are important metabolites in vertebrates' development and reproduction. For rapid screening sex hormones, matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is one of the promising analytical platforms, but MALDI MS faces many challenges in detecting steroids such as low ionization efficiency and matrix background interference. One potential strategy to overcome matrix interference in the low m/z region is using a cyclodextrin (CD)-supported matrix for steroid analysis since CD-supported matrixes are known to effectively suppress matrix-related ion signals. In this study, we aimed to find the optimal CD-supported matrix for the analysis of the nonderivatized sex steroids. Our results showed that the αCD-supported 2,5-dihydroxybenzoic acid (DHB) matrix efficiently ionized all three major classes of sex hormones, estrogens, androgens, and progestagens, with low or no matrix background and also with high sensitivity. In addition, the αCD-supported DHB matrix mainly generated molecular ions or protonated ions of sex hormones, and this enabled us to obtain information-rich tandem mass spectra which potentially lead to unambiguous identification of steroid species from complex metabolite mixtures.
    Bulletin- Korean Chemical Society 05/2014; 35(5):1409. DOI:10.5012/bkcs.2014.35.5.1409 · 0.84 Impact Factor


Available from
Jan 23, 2015