Antiamnesic effect of Stevioside in scopolamine-treated rats

Fermentation and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala - 147 002, Punjab, India.
Indian Journal of Pharmacology (Impact Factor: 0.69). 06/2010; 42(3):164-7. DOI: 10.4103/0253-7613.66840
Source: PubMed


The present study was undertaken to explore the potential of stevioside in memory dysfunction of rats. Memory impairment was produced by scopolamine (0.5 mg/kg, i.p.) in animals. Morris water maze (MWM) test was employed to assess learning and memory. Brain acetylcholinestrase enzyme (AChE) activity was measured to assess the central cholinergic activity. The levels of brain thiobarbituric acid-reactive species (TBARS) and reduced glutathione (GSH) were estimated to assess the degree of oxidative stress. Scopolamine administration induced significant impairment of learning and memory in rats, as indicated by a marked decrease in MWM performance. Scopolamine administration also produced a significant enhancement of brain AChE activity and brain oxidative stress (increase in TBARS and decrease in GSH) levels. Pretreatment of stevioside (250 mg/kg dose orally) significantly reversed scopolamine-induced learning and memory deficits along with attenuation of scopolamine-induced rise in brain AChE activity and brain oxidative stress levels. It may be concluded that stevioside exerts a memory-preservative effect in cognitive deficits of rats possibly through its multiple actions.

19 Reads
  • Source
    • "Scopolamine dysregulates cholinergic activity, resulting in the deficits of the learning ability and memory tasks (Elvander et al., 2004). Scopolamine-induced memory impairment is closely associated with the cholinergic dysfunction (Sharma et al., 2010). Short-term memory was deteriorated in the scopolamine-induced amnesia mice (Heo et al., 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease is the most common neurodegenerative disease and this disease induces progressive loss of memory function Scopolamine is a non-selective muscarinic cholinergic receptor antagonist and it induces impairment of learning ability. Exercise is known to ameliorate memory deficits induced by various brain diseases. In the present study, we investigated the effect of treadmill exercise on spatial learning ability in relation with cell proliferation in the hippocampus using the scopolamine-induced amnesia mice. For the induction of amnesia, 1 mg/kg scopolamine hydrobromide was administered intraperitoneally once a day for 14 days. Morris water maze test for spatial learning ability was conducted. Immonofluorescence for 5-bromo-2-deoxyuri-dine (BrdU) and western blot for brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) were performed. In the present results, scopolamine-induced amnesia mice showed deterioration of spatial learning ability. Inhibition of cell proliferation and suppression of BDNF and TrkB expressions were observed in the scopolamine-induced amnesia mice. Treadmill exercise improved spatial learning ability and increased cell proliferation through activating of BDNF-TrkB pathway in the amnesia mice. These findings offer a possibility that treadmill exercise may provide preventive or therapeutic value for the memory loss induced by variable neurodegenerative diseases including Alzheimer's disease.
    06/2014; 10(3):155-61. DOI:10.12965/jer.140110
  • Source
    • "It has been reported that scopolamine dysregulates cholinergic activity, which results in performance deficits on learning and memory tasks [26]. Scopolamine-induced memory impairments are associated with cholinergic dysfunction [27]. In the results of the present study, AChE expression was increased in the hippocampal CA1 region following scopolamine-injection, suggesting that destruction of ACh was enhanced by scopolamine. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Scopolamine is a nonselective muscarinic cholinergic receptor antagonist, which induces impairment of learning ability and memory function. Exercise is known to ameliorate brain disturbance induced by brain injuries. In the present study, we investigated the effect of treadmill exercise on short-term memory in relation to acetylcholinesterase (AChE) expression in the hippocampus, using a scopolamine-induced amnesia model in mice. To induce amnesia, 1 mg/kg scopolamine hydrobromide was administered intraperitoneally once per day for 14 days. A step-down avoidance test for short-term memory was conducted. AChE histochemistry, immunohistochemistry for collagen IV, and doublecortin were performed. Short-term memory deteriorated in the mice with scopolamine-induced amnesia, concomitant with enhanced AChE expression and suppression of angiogenesis in the hippocampus. Critically, treadmill exercise ameliorated short-term memory impairment, suppressed AChE expression, and enhanced angiogenesis in the mice with scopolamine-induced amnesia. Overexpression of AChE is implicated in both brain and renal disease. The findings of our study indicate that treadmill exercise may be of therapeutic value in neurodegenerative and renal diseases by suppressing the effects of AChE expression.
    International neurourology journal 03/2014; 18(1):16-22. DOI:10.5213/inj.2014.18.1.16 · 1.06 Impact Factor
  • Source
    • "C. mucronatum and C. thonningii reversed the memory deficits induced by scopolamine and inhibited AChE activities ex vivo, suggesting that C. mucronatum and C. thonningii affect cholinergic signalling to influence cognitive dysfunction. Scopolamine interferes with memory and cognitive function in humans (Riedel et al., 1995) and experimental animals (Sharma et al., 2010; Kulkarni et al., 2010) by blocking muscarinic receptors. Acute and systemic administration of scopolamine in animals provides the appropriate memory deficits related with the cholinergic deficit in AD or senile CNS dysfunction. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Context: Roots of Combretum mucronatum Schumach. & Thonn. (Combretaceae) and Capparis thonningii Schum. (Capparaceae) are used in southwest Nigeria in the treatment of inflammatory disorders and mental illness. Objective: This study evaluated the antidementic effect of the methanol root extracts of C. mucronatum and C. thonningii on scopolamine (3 mg/kg, i.p.) induced memory impairment in mice. Materials and methods: The effect of C. mucronatum and C. thonningii (50-200 mg/kg) administered orally for 3 days on memory impairments induced in mice by scopolamine was assessed in the passive avoidance and Morris water maze test and compared with that of tacrine (5 mg/kg, i.p.). The activities of acetylcholinesterase (AchE) and antioxidant enzymes were estimated in the brain after the completion of behavioral studies. Results: C. mucronatum and C. thonningii root extracts (50-200 mg/kg) reversed scopolamine-induced memory deficit with significant (p < 0.05) increase in transfer latency in passive avoidance test. Similarly, the extracts (200 mg/kg) ameliorated memory deficit as a result of significant (p < 0.001) decrease in escape latency and path length in Morris water maze test. The increased AChE activity induced by scopolamine was significantly (p < 0.05) inhibited by C. mucronatum and C. thonningii (100 and 200 mg/kg) treatment which was similar to the effect of tacrine. Both extracts significantly (p < 0.05) attenuated scopolamine-induced increase in oxidative stress parameters as well as restoration of glutathione activity. Discussion and conclusion: C. mucronatum and C. thonningii extracts possess significant anticholinesterase, antioxidant and antidementic properties, which may be useful in the management of Alzheimer's disease.
    Pharmaceutical Biology 09/2012; 51(1). DOI:10.3109/13880209.2012.704518 · 1.24 Impact Factor
Show more