Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion.

Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
The EMBO Journal (Impact Factor: 10.75). 11/2010; 29(21):3673-87. DOI: 10.1038/emboj.2010.239
Source: PubMed

ABSTRACT H3K9 methylation has been linked to a variety of biological processes including position-effect variegation, heterochromatin formation and transcriptional regulation. To further understand the function of H3K9 methylation, we have identified and characterized MPP8 as a methyl-H3K9-binding protein. MPP8 displays an elevated expression pattern in various human carcinoma cells, whereas knocking-down MPP8 results in the loss of cellular mesenchymal marker as well as the reduction of tumour cell migration and invasiveness, suggesting that MPP8 contributes to tumour progression. Following characterization demonstrates that MPP8 targets the E-cadherin gene promoter and modulates the expression of this key regulator of cell behaviour and tumour progression through its methyl-H3K9 binding. Furthermore, MPP8 interacts with H3K9 methyltransferases GLP and ESET, as well as DNA methyltransferase 3A. MPP8 knockdown decreases DNA methylation on E-cadherin CpG island attended by the loss of DNMT3A localization, indicating MPP8 also directs DNA methylation. Together, our results suggest a model by which MPP8 recognizes methyl-H3K9 marks and directs DNA methylation to repress tumour suppressor gene expression and, in turn, has an important function in epithelial-to-mesenchymal transition and metastasis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic modifications such as DNA methylation and histone H3 lysine 27 methylation (H3K27me) are repressive marks that silence gene expression. The M phase phosphoprotein (MPP8) associates with proteins involved in both DNA methylation and histone modifications, and therefore, is a potential candidate to mediate crosstalk between repressive epigenetic pathways. Here, by performing immunohistochemical analyses we demonstrate that MPP8 is expressed in the rodent testis, especially in spermatocytes, suggesting a role in spermatogenesis. Interestingly, we found that MPP8 physically interacts with PRC1 (Polycomb Repressive Complex 1) components which are known to possess essential function in testis development by modulating monoubiquitination of Histone H2A (uH2A) and trimethylation of Histone H3 Lysine 27 (H3K27me3) residues. Knockdown analysis of MPP8 in HeLa cells resulted in derepression of a set of genes that are normally expressed in spermatogonia, spermatids and mature sperm, thereby indicating a role for this molecule in silencing testis-related genes in somatic cells. In addition, depletion of MPP8 in murine ES cells specifically induced expression of genes involved in mesoderm differentiation, such as Cdx2 and Brachyury even in the presence of LIF, which implicated that MPP8 might be required to repress differentiation associated genes during early development. Taken together, our results indicate that MPP8 could have a role for silencing genes that are associated with differentiation of the testis and the mesoderm by interacting with epigenetic repressors modules such as the PRC1 complex. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 02/2015; 458(3). DOI:10.1016/j.bbrc.2015.01.122 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
    Nucleic Acids Research 01/2015; 43(3). DOI:10.1093/nar/gku1350 · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a critical developmental process, epithelial-mesenchymal transition (EMT) involves complex transcriptional reprogramming and has been closely linked to malignant progression. Although various epigenetic modifications, such as histone deacetylation and H3K9 methylation, have been implicated in this process, how they are coordinated remains elusive. We recently revealed that MPP8 couples H3K9 methylation and DNA methylation for E-cadherin gene silencing and promotes tumor cell migration, invasion, and EMT. Here, we show that MPP8 cooperates with the class III HDAC SIRT1 in this process through their physical interaction. SIRT1 antagonizes PCAF-catalyzed MPP8-K439 acetylation to protect MPP8 from ubiquitin-proteasome-mediated proteolysis. Conversely, MPP8 recruits SIRT1 for H4K16 deacetylation after binding to methyl-H3K9 on target promoters. Consequently, disabling either MPP8 methyl-H3K9 binding or SIRT1 interaction de-represses E-cadherin and reduces EMT phenotypes, as does knockdown of MPP8 or SIRT1 in prostate cancer cells. These results illustrate how SIRT1 and MPP8 reciprocally promote each other's function and coordinate epithelial gene silencing and EMT. © 2015 The Authors.
    EMBO Reports 04/2015; DOI:10.15252/embr.201439792 · 7.86 Impact Factor


Available from